VulinOSS: A Dataset of Security Vulnerabilities
in Open-source Systems

Antonios Gkortzis, Dimitris Mitropoulos and Diomidis Spinellis
Department of Management Science and Technology
Athens University of Economics and Business
Athens, Greece
{antoniosgkortzis,dimitro,dds}@aueb.gr

ABSTRACT

Examining the different characteristics of open-source software in
relation to security vulnerabilities, can provide the research com-
munity with findings that can lead to the development of more
secure systems. We present a dataset where the reported vulnera-
bilities of 8694 open-source project versions, can be correlated with
the corresponding source code and a number of software metrics.
The metrics were obtained by analyzing the project’s source code
via well-established tools. Apart from commonly used metrics (e.g.
Loc), we also provide data related to modern development trends
such as continuous integration and testing. We outline motivational
examples based on the dataset we describe.

KEYWORDS

Security Vulnerabilities, Open-source Software, Continuous Inte-
gration, Testing

ACM Reference Format:

Antonios Gkortzis, Dimitris Mitropoulos and Diomidis Spinellis. 2018. Vuli-
nOSS: A Dataset of Security Vulnerabilities in Open-source Systems. In
Proceedings of ACM Mining Software Repositories conference (MSR’18). ACM,
New York, NY, USA, 4 pages. https://doi.org/10.475/123_4

1 INTRODUCTION

The examination of diverse software characteristics (e.g. code size)
in relation to security vulnerabilities has been a constant topic
of interest to the research community [2, 6, 8]. However, current
software development trends, such as Continuous Integration (cr),
haven’t been studied from the software security perspective. Due to
its nature, open-source software provides an opportunity for such
a study.

We have created a dataset that correlates diverse software met-
rics derived from thousands open-source components with their
(known) security bugs. To construct our dataset we examined the
reports of the National Vulnerability Database! (NvD), to search for
vulnerable open-source project versions. Notably, the NvD provides
many details regarding the severity of a defect and the impact it
may have on integrity, confidentiality and more. Then, we cloned

! https://nvd.nist.gov/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MSR’18, May 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06.

https://doi.org/10.475/123_4

the corresponding project repositories and analyzed the source of
the vulnerable versions to retrieve specific metrics. Our analysis
was based on well-established tools and techniques. Apart from a
number of standard metrics (e.g. lines of code), we have collected
elements related to testing and continuous integration. This provides
a way to examine if such methods indeed lead to more secure soft-
ware. We have made some initial measurements to demonstrate
how researchers can use our dataset and produce interesting results.

The contributions of our work are a) the construction process of
a dataset that correlates software metrics derived from 8694 open
source components with their security vulnerabilities, b) the dataset
and, c) how it can be used to produce research results. To maintain
the anonymity we make the source code and the dataset available
on a file sharing service.?

2 DATASET CONSTRUCTION

Figure 1 illustrates the architecture of our dataset construction pro-
cess. The construction was done in four steps. First we collected
and processed (1) the various vulnerability reports from the Na-
tional Vulnerability Database (NvD) to produce a set of open-source
projects that contain software defects for further analysis. Then
we cloned (2) the repositories of the selected projects. With the
repositories at hand we mapped (3) version references (i.e. commit
tags and branches) to the project versions retrieved during the first
step. Based on the mapping, we checked-out (4) specific versions
from the repository. Finally, by analyzing the code base of these ver-
sions, we retrieved code metrics and continuous integration traces.
The results were then stored in a database, which is described in
Section 3. In the following, we discuss each step in detail.

Refine The goal of this step was to examine all vulnerabilities con-
tained in the NvD and store them along with the projects that they
affect. First, we parsed the json feed files of the NvD, and retrieved
the cve® (Common Vulnerabilities and Exposures) entries, to cap-
ture reported defects. Notably, NvD enriches the information of a
CVE entry with severity scores,* technical information regarding
the vulnerability, its category (as defined by MrTres’s Common
Weaknesses and Enumeration® list), and the project it affects. If
multiple versions of a project are affected then the entry includes
all these versions too. For every reported defect he have collected
all the aforementioned details. Specifically, we have obtained 94010
cVvEs for 7627 projects and their corresponding affected versions.

2 https://drive.google.com/open?id=1SNOW5{D9vpTgGly-JECRvU61swv1-PSu
3 https://cve.mitre.org/

4https://nvd,nist.gov/vulln-metrics/cvss

5 https://cwe.mitre.org/


https://doi.org/10.475/123_4
https://nvd.nist.gov/
https://doi.org/10.475/123_4
https://drive.google.com/open?id=1SN0W5fD9vpTgGly-JECRvU61swv1-PSu
https://cve.mitre.org/
https://nvd.nist.gov/vuln-metrics/cvss
https://cwe.mitre.org/

MSR’18, May 2018, Gothenburg, Sweden

'
D~
JSON feeds .
— Valid Op
e.g. filter out source Projects II
non-open-

source projects

W
N— P
- <—
L —
| SOUrce projecs '
' f 2 4
e Refine Fetch Analyze
=
i
| '
CVEs and H :
Project Versions

' (©?

Commit Tags I
Branches

Mo 1

Checkout specific

versions based on
the mapping and
H retrieve metrics
—_——
Map project versions
with version references

Figure 1: The dataset construction architecture.

We then ordered the list of 7627 project in descending order with
respect to the number of vulnerabilities.

Then, we manually inspected the first six-hundred projects (those
who had the most reported defects) and selected those that satisfy
the following criteria: (1) they are open-source, and (2) there is a
publicly available repository that hosts their code-base. One hun-
dred and fifty three (153) projects satisfied these criteria. Note also
that we excluded cases where it was not clear if the source code
matched the project that was registered in the Nvp. For each of
these 153 cases we manually specified the following data: their
repository URL, their web-site URL, and their software category.
Our categorization was based on the Freessp port classification.®

A challenge during the first step was the existence of projects re-
ported with different names due to simple misspellings (e.g. nodejs:
node. js and nodejs:nodejs), the change of the software vendor
(e.g. rob_flynn:gaim changed to pidgin:pidgin), or just varia-
tions of the names (e.g. xorg:x11 and x:x.org_x11). In order to
have a unique entry for each project we examined the history of
each project. Then we scanned the list of the 7627 projects and
found 102 cases that had more than one names. For these cases we
created a list that maps the product vendor and the name variations
to one entry.

Fetch With the aforementioned list at hand, we cloned locally the
153 project repositories. As Figure 1 indicates, the various repos-
itories were based on three different source control management
systems, namely: Git,” Mercurial, and Subversion.’

Map In this step we associated the project versions (found in the
first step) with the version references (commit tags and branches)
found in the corresponding project repositories. To achieve this we
queried each repository with the appropriate commands for each
case (git tag, hg tags,svn ls -v /tags and, their branch listing
commands respectively) and found that ninety-nine repositories
had version references. For these projects we manually inspected
the format of their version references by looking at each reposi-
tory’s tags. We then checked the NvD reported versions to find sim-
ilarities between the two and link them. For example, an NvD entry

6https://www.freebsd,org/ports/categories- grouped.html
7 https://git-scm.com/

Shttps://www.mercurialf scm.org/
9https://subversionapach&org/

A. Gkortzis et al.

Programming Software CWEs
Languages Categories
13 1F 1F
+ 1.r T 1. T+ 1.*
1.
Code Metrics Projects CVEs
1F 1
1q.* 1 1.
Continuous 1 . 1.
Integration R‘:;:laescets H—t Cases
Providers 1

1 { 0..1 #

Figure 2: Vulinoss database schema.

involved Xen hypervisor’s version 4.7.2. A commit tag that in-
volves this version however, has the following 1p: RELEASE-4.7.2.
Hence, for each project we created a set of regular expressions
that could map such cases. For the aforementioned example, we
created the following replacement regular expression (in Python):
re.sub(r’ (RELEASE-)’,’’, tag).

Analyze Having the repositories and the project versions at hand,
we created Python workers that operated in the following manner:
Initially, the worker checks out a specific version. Then it scans the
source code to identify files that contain testing code. The scan is
based on the heuristics of reaper, a well-established tool by Munaiah
et al [7]. In its current state, the worker can identify testing code
written in ¢, c++, c#, Java, Javascript, Objective-c, PHP, Python and
Ruby. Finally, the worker invokes cLoc!® (Count Lines Of Code)
which in turn, runs on both the source code of the repository and
the testing code that was retrieved by the worker. cLoc is commonly
used in research to collect similar metrics [5]. The produced metrics
are then stored in a MysQL database.

Apart from the results of cLoc, the worker also searches the
project’s directories for specific configuration files that indicate the
use of c1 technologies. If it finds such instances, it also records that
the developers employ c1 for this project along with the type of the
c1 technology that was used.

3 DATASET DESCRIPTION

Table 1, lists some descriptive statistics regarding our dataset in-
cluding the number of projects it contains, project versions based
on c1 and more. All the collected data are stored in a relational
database that includes nine tables. All tables and their relations can
be seen in Figure 2. Below we provide details for each table.

CVE contains vulnerabilities, their description, and metrics that
involve their severity. The severity metrics were based on the the
second version of the Common Vulnerability Scoring System!!
(version 2 was selected due to its better backwards compatibility
compared to version 3). The cVE table is related to the cwE table.

10https:/ /github.com/AlDanial/cloc
1 https://www.first.org/cvss/

Table 1: Descriptive statistics measurements for our dataset.

Measurement Value
Projects 153
Project Versions 23884
Mapped Versions 8694
Number of Vulnerabilities 17738

Project Versions with Testing Code 38650
Project Versions employing c1 1538



https://www.freebsd.org/ports/categories-grouped.html
https://git-scm.com/
https://www.mercurial-scm.org/
https://subversion.apache.org/
https://github.com/AlDanial/cloc
https://www.first.org/cvss/

VulinOSS: A Dataset of Security Vulnerabilities
in Open-source Systems

CWE stores the vulnerability classification list which consists of
the 716 categories and their corresponding descriptions. Each entry
of the previous table is related to one of the categories of this one.
Software Categories stores the list of software categories namely,
operating systems, end-user applications, system and administration
utilities, programming languages & development frameworks, web
and network utilities, science and engineering. We created this list by
grouping the 92 FreessD software port classification!? categories.
This list can be customized and|or extended by researchers to fit
their research needs.

Projects holds the data related to the 153 projects, selected during
the first step of the collection process, and it is related to the Soft-
ware Categories table. It also includes data about project vendors,
websites, a URL that points to the project repository, the project’s
version control system type and a boolean field that shows if the
repository has version references.

Project Releases entries represent a project version, as reported in
the NvD JsoN feeds. This table stores 23884 different project releases,
and each release refers to a project found the “Projects” table. In
addition, we keep the version reference, (commit tag or branch)
There are 8694 mapped versions, which account to the 36.4% of
the total project releases. Finally, the table stores a reference to the
“Continuous Integration Providers" table, which we describe later
on.

Vulnerable Cases contains mappings between vulnerabilities and
specific project versions.

Continuous Integration Providers stores a list of 9 continuous
integration service providers, including Travis,'3> AppVeyor,* Cir-
cle,’® and more.

Programming Languages contains records of a programming
languages that the crLoc tool can identify as valid. Specifically, 219
programming languages are stored here including Java, c, c++, PHP,
Python, and JavaScript

Code Metrics contains the metrics that we collected for every
mapped version of a project during the analysis step (4), as we
described in Section 2. If the project is written in more than one
programming languages, there are metrics for each case. Specifi-
cally, for each case the table contains the number of files (containing
code written in this language), the lines of code, the numbers of
blank lines and finally, the number of comment lines. Additionally,
if testing code exists the corresponding metrics are repeated that
code.

4 APPLICATIONS

We provide a number of examples that illustrate how researchers
can harness our database.

Vulnerability Density with respect to testing ratio and con-
tinuous integration. The vulnerability density is the number of
vulnerabilities per unit of code size. In our first measurement, we
set the code size as 1000 lines. We consider as testing ratio the lines
of code related to testing divided by the total lines of code for a
specific version.

Rhttps://www.freebsd.org/ports/categories-grouped.html
Bhttps://travis-ci.org/

https://www.appveyor.com/

Bhttps://circleci.com/

MSR’18, May 2018, Gothenburg, Sweden

Testing Ratio
o o I o o e
S o = & S S
[}

o
o

0.0

0.00 0.25 0.50 0.75 1.00 125 1.50 175 2.00
Vulnerability Density

Figure 3: Vulnerability density with respect to testing ratio.

0.7 o Version using Cl
o Version not using Cl

0.6

Testing Ratio
o o I o
S o IS o

e
s

0.0

0.00 0.25 0.50 0.75 1.00 125 150 175 2.00
Vulnerability Density

Figure 4: Vulnerability density relation to testing ratio and contin-
uous integration.

First, we wanted to observe how the vulnerability density mea-
sure is related to the testing ratio. Figure 3 illustrates this relation.
Darker polygons represent more project releases corresponding
to that chart area. The Figure indicates that there are significantly
more vulnerable project releases when the testing ratio is lower.
This observation may indicate that projects accompanied by testing
code can be more secure.

We also attempted to correlate the two aforementioned measures
with continuous integration. Figure 4 presents a similar plot but
adds two colors to the various points of the graph. Red points
represent project versions that make use of continuous integration
while the blue points are versions that do not. The Figure indicates
that c1 has a positive effect on the code reducing the number of
vulnerabilities that it contains.

Testing ratio and vulnerability severity. The severity of a
vulnerability (low, medium, high) is an element that is of high
importance in terms of security. We wanted to correlate the severity
of the various defects of our dataset with the testing ratio of a project
release. Figure 5 illustrates the average severity of the defects of a
project version in relation to its testing ratio. A general observation
is that the majority of the versions have a testing ratio lower than
40%. In addition, versions with a very low testing ratio appear to
contain more severe vulnerabilities.

Vulnerability severity in non-bounds checking language.
Programming languages such as ¢, c++ and assembly are more
prone to security bugs because they lack a protection scheme
against overwriting data in arbitrary parts of their memory space.
For each project version written in such languages, we calculated


https://www.freebsd.org/ports/categories-grouped.html
https://travis-ci.org/
https://www.appveyor.com/
https://circleci.com/

MSR’18, May 2018, Gothenburg, Sweden

10

~

Vulnerability Severity
v o

“Ci 3

~

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Testing Ratio

Figure 5: Vulnerability severity with respect to testing ratio.

10

9

Vulnerability Severity
L=

0.0 0.2 04 0.6 0.8 10
Non-bounds Checking Code Ratio

Figure 6: Vulnerability severity with respect to non-bound checking
code ratio.

the correlation of the corresponding code ratio, with the severity of
this project’s vulnerabilities. Figure 6 illustrates the results of this
measurement. In the hexagonal binning, we observe that releases
with a high ratio of non-bounds checking languages seem to have
slightly more severe vulnerabilities, compared to other releases.

5 LIMITATIONS

Limitations concerning our dataset involve the completeness of
some project repositories. In particular, there are old project ver-
sions that do not exist in the project’s active repository. Hence, if
the NvD has entries regarding these versions the mapping step will
fail. A potential solution would be to retrieve legacy repositories, if
they indeed exist.

A threat to the internal validity of our dataset construction could
be the limited analysis that our worker processes perform to identify
testing code. However, our scripts can be easily extended with
additional modules that search for testing code written in more
languages.

6 RELATED WORK

Massacci et al. [4] examined the evolution of security vulnerabilities
by examining six major versions of Firefox. To do so they created
a database schema that contained information coming from the
“Mozilla Firefox-related Security Advisories” (MFsa) list,'® Bugzilla
entries and more. Mitropoulos et. al [6] have presented a dataset
with the software bugs (including security bugs) of the Maven

16 http://www.mozilla.org/projects/security/known-vulnerabilities.html

A. Gkortzis et al.

repository. To produce this dataset the authors scanned all the JAr
files of the repository with the Findbugs static analysis tool.!”

On the c1 front, Vasilescu et. al. [9] have analyzed the historical
data of GitHub and reported that continuous integration has a
positive effect on bug reporting when it comes to core-developers
(up to 48%).

7 CONCLUSIONS

We have presented a dataset that contains vulnerable open-source
project versions, details about their defects (e.g. severity), and a
number of metrics related to their development process (e.g. if
testing code exists). We have also shown how our data can be used
to extract results about the relation between security bugs and
software development techniques such as testing and continuous
integration.

Our dataset can be used to complement existing ones such as
GHTorrent [3], RepoReaper [7], and TravisTorrent [1], to investigate
the security aspects of a software artifact with respect to its soft-
ware development team and the characteristics of its development
process such as, the number of contributors and the number of
issues.

The dataset, together with the scripts used for its construction
will be made publicly available on GitHub under a Creative Com-
mons License with the paper’s camera ready version.

ACKNOWLEDGMENTS

The research presented in this paper is supported by the European
Union within the H2020 MSCA-ITN-EID Project “SENECA”.

REFERENCES

[1] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-
sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration.
In Proceedings of the 14th working conference on mining software repositories.

[2] Nigel Edwards and Liqun Chen. 2012. An historical examination of open source
releases and their vulnerabilities. In Proceedings of the 2012 ACM conference on
Computer and communications security (CCS '12). ACM, New York, NY, USA,
183-194.

[3] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories (MSR ’13). 233-236.
/pub/ghtorrent-dataset-toolsuite.pdf Best data showcase paper award.

[4] Fabio Massacci, Stephan Neuhaus, and Viet Hung Nguyen. 2011. After-life vulner-
abilities: a study on firefox evolution, its vulnerabilities, and fixes. In Proceedings
of the Third international conference on Engineering secure software and systems
(ESS0S’°11). Springer-Verlag, Berlin, Heidelberg, 195-208.

[5] Andrew Meneely, Alberto C. Rodriguez Tejeda, Brian Spates, Shannon Trudeau,
Danielle Neuberger, Katherine Whitlock, Christopher Ketant, and Kayla Davis.
2014. An Empirical Investigation of Socio-technical Code Review Metrics and
Security Vulnerabilities. In Proceedings of the 6th International Workshop on Social
Software Engineering (SSE 2014). ACM, New York, NY, USA, 37-44.

[6] Dimitris Mitropoulos, Vassilios Karakoidas, Panos Louridas, Georgios Gousios, and
Diomidis Spinellis. 2014. The Bug Catalog of the Maven Ecosystem. In Proceedings
of the 11th Working Conference on Mining Software Repositories (MSR 2014). ACM,
New York, NY, USA, 372-375.

[7] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for engineered software projects. Empirical Software Engineering
22, 6 (Dec. 2017), 3219-3253. https://doi.org/10.1007/s10664-017-9512-6

[8] Andy Ozment and Stuart E. Schechter. 2006. Milk or wine: does software secu-

rity improve with age?. In Proceedings of the 15th conference on USENIX Security

Symposium - Volume 15 (USENIX-SS’06). USENIX Association, Berkeley, CA, USA.

Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir

Filkov. 2015. Quality and Productivity Outcomes Relating to Continuous Integra-

tion in GitHub. In Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering (ESEC/FSE 2015). ACM, 805-816.

=

17http://ﬁnclbugs.sourceforge,net/


http://www.mozilla.org/projects/security/known-vulnerabilities.html
/pub/ghtorrent-dataset-toolsuite.pdf
https://doi.org/10.1007/s10664-017-9512-6
http://findbugs.sourceforge.net/

	Abstract
	1 Introduction
	2 Dataset Construction
	3 Dataset Description
	4 Applications
	5 Limitations
	6 Related Work
	7 Conclusions
	References

