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Abstract. Reuse is a common and often-advocated software develop-
ment practice. Significant efforts have been invested into facilitating
it, leading to advancements such as software forges, package managers,
and the widespread integration of open source components into propri-
etary software systems. Reused software can make a system more secure
through its maturity and extended vetting, or increase its vulnerabil-
ities through a larger attack surface or insecure coding practices. To
shed more light on this issue, we investigate the relationship between
software reuse and potential security vulnerabilities, as assessed through
static analysis. We empirically investigated 301 open source projects in
a holistic multiple-case methods study. In particular, we examined the
distribution of potential vulnerabilities between the native code created
by a project’s development team and external code reused through de-
pendencies, as well as the correlation between the ratio of reuse and the
density of vulnerabilities. The results suggest that the amount of poten-
tial vulnerabilities in both native and reused code increases with larger
project sizes. We also found a weak-to-moderate correlation between a
higher reuse ratio and a lower density of vulnerabilities. Based on these
findings it appears that code reuse is neither a frightening werewolf in-
troducing an excessive number of vulnerabilities nor a silver bullet for
avoiding them.

Keywords: Software reuse · Security vulnerabilities · Case study.

1 Introduction

Code reuse is a widely advocated and adopted practice in software development.
A Linux distribution is a great example of software reuse, bundling together
several packages to provide the functionality of a modern operating system. In
a similar manner, the dominant mobile operating system, Android,1 is based

1 https://www.android.com/
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on a customized Linux kernel and bundles additional open source packages. To
develop user applications, the Android platform provides a set of Java libraries,
which are among the more than 3 million unique libraries (and their versions)
from the Maven repository.2

Nevertheless, similarly to any other design decision, code reuse has limita-
tions. A prominent side-effect of code reuse is the existence of serious potential
security risks. Kula et al. [12] analyzed 4 659 open source software systems and
showed that more than 80% of them used outdated external libraries and de-
pendencies, while 69% of the developers they interviewed were unaware of any
security risks in their reused code.

As a concrete example, Heartbleed3 was a severe security vulnerability in the
OpenSSL cryptographic software library that allowed any user on the Internet to
read arbitrary memory contents. Through this vulnerable version of the library,
a malicious user could retrieve secret keys that protected communications, user-
names and passwords, personal emails, documents and messages. The bug was
detected two years after its introduction in the code. It affected the web servers
that were powering 66% of the active web sites of that time [1]. Another, more
recent, example is the Equifax incident [2], in which hackers exploited a known
vulnerability in a third-party Java library that Equifax knowingly used, and
stole personal private information of more than 147 million American citizens.

Various initiatives try to battle this problem. GitHub introduced the Security
Alert for Vulnerable Dependencies4 service aiming to increase users’ awareness
and mitigate the potential security risks. Similarly, any Linux or BSD system
by default notifies users for available security updates in vulnerable versions of
installed packages and system libraries.

Despite the existence of well-known security mishaps due to software reuse,
to the best of our knowledge there is a lack of large-scale studies that investigate
how security vulnerabilities are associated with code reuse in software systems.
This paper aims to contribute towards this direction by analyzing a large set of
open source software systems and comparing the levels of vulnerabilities between
the native application source code written by the software development team and
external source code introduced through dependencies on third-party libraries.
To achieve this, we collected a set of 301 Java projects and compared the native
and reused parts of the code with regards to potential security vulnerabilities,
which were detected based on static analysis.

The analysis of the produced data revealed a weak-to-moderate inverse corre-
lation between the code reuse ratio and the vulnerability density in open source
software systems. This means that software systems with higher reuse ratio tend
to have fewer potential vulnerabilities compared to projects where native code is
dominant. The main contribution of our work is that, although we observed that
the amount of potential vulnerabilities in both native and reused code increases

2 https://mvnrepository.com/repos/central
3 https://nvd.nist.gov/vuln/detail/CVE-2014-0160
4 https://help.github.com/articles/about-security-alerts-for-vulnerable-

dependencies/
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with larger project sizes, a higher reuse ratio is associated with a lower density
of vulnerability overall. Additionally, we contribute: (a) the construction process
of a dataset that correlates the software reuse ratio of open source Java projects
with their potential security vulnerabilities, (b) the aforementioned dataset per
se, and (c) a statistical analysis of this dataset. The source code to reproduce
the process is available on GitHub5 and the dataset on Zenodo.6

The remainder of the paper is organized as follows. Section 2 presents the
related work. Section 3 describes the approach of our study regarding the dataset
construction and the analysis tools. Section 4 presents our findings, which we
further discuss in Section 5. Section 6 presents the limitations of our study and
Section 7 our conclusions.

2 Related Work

In this section, we present related work. We note that since we could not identify
studies that are directly related to ours, we broadened the scope of this section
to describe efforts that deal with software defects and vulnerabilities in reused
code.

Pashchenko et al. [17] conducted a study on the SAP software ecosystem,
investigating how much of the reused code in SAP is affected by known vulner-
abilities. The authors, similarly to our study, analyzed the top 200 open source
Maven systems that SAP is reusing. They examined vulnerabilities that have al-
ready been disclosed and probably fixed. Thus, their study is not affected by false
positives. However, the nonexistence of known vulnerabilities does not guaran-
tee the absence of any other undetected vulnerabilities. The authors reported
that 13% of the direct and transitive libraries that were reused were affected by
at least one known vulnerability. In their analysis they excluded none-deployed
dependencies (e.g., test dependencies).

Mohagheghi et al. [15] studied historical data of software defects for 12 con-
sequent releases of a large-scale telecom system developed by Ericsson. Their
goal was to investigate the impact of reuse on the defect density (defined as de-
fects per lines of code) and the stability of the system (defined as the degree of
modification). Their findings showed that reused code components had a lower
defect density compared to non-reused ones. Moreover, reused components had
a higher stability compared to the non-reused ones.

Additionally, Mitropoulos et al. [14] used FindBugs to statically examine
the Maven ecosystem and presented a dataset of the bugs (including security
bugs) of more than 17 000 libraries (155 000 considering all their versions). Their
dataset can be used to analyze the risk of using outdated libraries that exist in
the Maven Central repository. Although, this work does not examine reuse we
find it relevant to mention, since among the results, the authors reported a weak
correlation between potential security vulnerabilities and the project size.

5 https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software
6 http://doi.org/10.5281/zenodo.2566055
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Concerning the detection of vulnerable reused code, Pham et al. [18] intro-
duced SecureSync, an automatic approach that analyzes existing vulnerabilities,
in open source systems and creates models in order to detect suspicious pat-
terns in similar systems. The authors evaluated their approach by analyzing 176
releases of 119 open source projects and identified suspicious code in 51% of
them.

Practitioners have also made significant contributions in this area. Ponta
et al. [19] presented their approach to identify exploitable vulnerabilities based
on function call graphs. Recently they made their tool7 available for detecting
known vulnerabilities in Java and Python software systems.

In Table 1, we highlight the main differences of our study compared to related
work. In particular, to the best of our knowledge, the study reported in this paper
is the first to investigate the association between code reuse and vulnerabilities,
as obtained by means of static analysis, in multiple open source systems.

Table 1. Comparison against related work

Study Context
Focus on
security

Number of
projects

Source of
vulnerabilities

Relate
security
to reuse

[17] Open source Yes 200 Manual analysis Yes
[15] Proprietary No 1 Defect reporting system Yes
[14] Open source Yes 17 505 Static analysis No
[18] Open source Yes 119 Static analysis and

clone detection
Yes

[19] Open source Yes 500 Static and dynamic
analysis

No

Ours Open source Yes 301 Static analysis Yes

3 Study Design

In this section, we present the protocol of our case study, which was designed
according to the guidelines of Runeson et al. [20], and reported based on the
Linear Analytic Structure [20].

3.1 Objective and Research Questions

The goal of the study was formulated according to the Goal-Question-Metric
(GQM) approach [21], and is described as follows: “analyze native and reused
code, for the purpose of evaluation, with respect to the differences in the
estimated levels of security, from the point of view of software developers,
in the context of open-source software.” To fulfill this objective, we have set
two research questions (RQs), as follows:

RQ1: What factors can group projects with regards to security vulnerabilities?

7 https://sap.github.io/vulnerabilityassessmenttool/
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RQ1 aims at acquiring an overview of open-source projects with regards to the
security vulnerabilities identified through static analysis. This overview allows
the provision of demographics for the dataset and the identification of groups of
projects with similar features. This information is also useful to support decision-
making in software development activities related to reuse, and to drive future
research efforts.

RQ2: How is software reuse associated with security vulnerabilities?
RQ2.1: How does native code contribute to the overall amount of vulnera-

bilities?
RQ2.2: How does reused code contribute to the overall amount of vulnera-

bilities?

RQ2 aims at investigating an important question associated with software
reuse, namely the extent to which reuse influences the security of a project. For
that, we exploit static analysis to identify potential vulnerabilities and investi-
gate how native code developed by the project’s team and reused code stemming
from dependencies on third-party components contribute to the overall estimated
security level.

3.2 Cases and Unit of Analysis

To answer the aforementioned research questions, we designed a holistic multiple-
case study, i.e., one in which the multiple cases are also the units of analysis [20].
For this study, we chose open source projects as cases and units of analysis. We
selected this particular type of study because the case granularity (i.e., project-
level) is sufficient, and multiple cases will provide statistical power to the anal-
ysis. Moreover, the selected unit of analysis allows answering the set research
questions and pinpoint cases that researchers or practitioners may want to in-
vestigate in more detail.

The cases were collected from Reaper [16] and a subset of the GHTorrent
data set [8]. GHTorrent is a large openly-available database of GitHub repository
metadata. Reaper is a curated dataset comprising more than 2 million unique
projects. It retrieves information from GHTorrent and filters it on the following
criteria:

– Select only projects that are of the Java, Python, PHP, Ruby, C++, C, or
C# programming languages.

– The project’s repositories contain evidence of an engineered software project
such as, documentation, testing, and project management.

– This dataset contains only projects that are publicly accessible, excluding
forked and deleted repositories.

3.3 Variables and Data Collection

To address the research questions, we built a dataset containing two groups of
variables for each unit of analysis: (a) project information; and (b) vulnerability
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Fig. 1. The dataset construction procedure.

information. We built the dataset by following a five-step procedure, which is
described in the following paragraphs together with the associated variables.
Figure 1 illustrates the data collection. A summary of the recorded variables is
presented in Table 2. We note that the complete procedure is automated in a
set of scripts available on GitHub.8

Table 2. List of recorded variables

Variable Description

Project full project name
Cn number of native classes
Cr number of reused classes
Ln number of source lines of code in native classes
Lr number of source lines of code in reused classes
Vn number of vulnerabilities in native code
Vr number of vulnerabilities in reused code
V Cn number of potentially vulnerable native classes
V Cr number of potentially vulnerable reused classes
V Ln number of source lines of code in potentially vulnerable native classes
V Lr number of source lines of code in potentially vulnerable reused classes

Step 1: Filter projects. First, we queried the Reaper database [16] and se-
lected the GitHub projects written in Java. We selected Java as a programming
language so as to take advantage of automated build support provided by Maven,
and the security violations identification capabilities of the SpotBugs tool. Thus,
we filtered the projects by selecting only those that were using the Apache Maven

8 https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software
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automation tool9. We applied this filter because this tool is well-known, and it
allowed us to automate the build process of multiple projects and retrieve their
dependencies. Both operations were necessary for collecting the potential vulner-
abilities. Finally, we sorted the projects based on their popularity, by retrieving
their stars using the GitHub api.10

Step 2: Download repositories. Next, using the Git tool, we cloned locally
the top 1000 projects. We selected this amount of projects to improve the repre-
sentativeness of the sample towards the population and strengthen the statistical
analyses.

Step 3: Build projects and retrieve dependencies. With the repositories at
hand, we built each project. During the building process, the generated compiled
package (i.e., a .jar or .war file) is placed in the local Maven repository (the
.m2 directory by default). The dependencies (third party packages or libraries)
of each project are also downloaded and placed in the local repository. From
the total 1000, we discarded 490 projects that failed to build. For the remaining
510 successful builds, we stored their tree, i.e., the paths to the packages of the
project and its dependencies.

Step 4: Collect project information. In this step, we analyzed each project’s
dependencies’ tree and collected the first groups of variables: project, Cn, Cr, Ln

and Lr. For that, we collected the class files from each package and also used
them to retrieve the source lines of code (sloc), which is estimated based on
the number of the statements.

Step 5: Detect potential vulnerabilities. To perform this step we employed
static analysis. The benefit of using static analysis for detecting potential secu-
rity vulnerabilities is the ability to assess a large set of projects without the
need of test cases and execution scenarios. Static analyzers can look for patterns
in the code base of an entire system attempting to cover all possible execution
paths. Kulenovic et al. [13] studied several static analysis methods for detect-
ing security vulnerabilities. Their findings show that the algorithms used for
detecting security vulnerabilities with static analysis are improving constantly,
and consequently are increasing the accuracy and the precision of the static
analyzers.

We used the static analyzer SpotBugs11 (v3.1.11) [10, 24, 22]. This tool con-
siders bug patterns as rules to identify violations of good coding practices [10].
The rules are organized into nine categories, two of them related to security:

9 https://maven.apache.org/
10 https://developer.github.com/v3/
11 This is the well-known FindBugs tool further developed under a new name.

For details, see https://mailman.cs.umd.edu/pipermail/findbugs-discuss/2017-
September/004383.html
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Security and Malicious Code. Moreover, SpotBugs classifies the detected viola-
tions into three levels of confidence (low, medium, high) related to the likelihood
of their veracity.

The tool has already been evaluated in independent studies [10], [6] and [4],
which reported an average precision of 66%. The studies also reported that the
precision can be boosted by ignoring vulnerabilities with a low level of confi-
dence. Nevertheless, there is still a possibility that SpotBugs introduces noise
(false positives) to the data collection. However, other studies showed that the
detected vulnerabilities are valuable pointers to parts of the system that need
to be maintained [3, 10, 11, 23, 24, 5].

Finally, to further improve the findings of SpotBugs, we included its plu-
gin FindSecBugs,12 which covers the Open Web Application Security Project
(OWASP) top-10 vulnerabilities13 and several other Common Weaknesses Enu-
merations (CWEs).14 CWE is a list of common security weaknesses, maintained
by the community, and serves as a common language for classifying security vul-
nerabilities.

To detect potential vulnerabilities, SpotBugs requires the path to the com-
piled Java project and its dependencies. For that, we used the project trees
obtained in Step 3. The output of this analysis is a xml file that contains infor-
mation about the potential vulnerabilities among the native and reused classes.

Step 6: Collect vulnerability information. In this final step, we collected
the second groups of variables: Vn, Vr, V Cn, V Cr, V Ln, and V Lr. For that, we
parse each SpotBugs’ xml report that we generated in the previous step. From
these reports we select only the potential security vulnerabilities and we discard
all other data. Then, we aggregate the results separately for the native source
code and the reused source code.

3.4 Analysis Procedure

To investigate the collected data, we performed various statistical analyses. First,
to answer RQ1, we calculated the descriptive statistics on all collected variables,
and used scatter plots and box plots to aid the interpretation of the collected
dataset. To answer RQ2, we first calculated the ratio of reuse Rr and vulnera-
bilities density Dv as described in (1) and (2) below.

Rr =
Lr

Ln + Lr
(1)

Dv =
Vn + Vr

Ln + Lr
(2)

Next, we used the Pearson correlation [7] to calculate the association between
reuse and security vulnerabilities. To further support this analysis, we created

12 https://find-sec-bugs.github.io/
13 https://www.owasp.org/index.php/Top 10-2017 Top 10
14 https://cwe.mitre.org/
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scatter plots between the ratio of reuse and the amounts of both native-code and
reused-code vulnerabilities. We note that this complete procedure is automated
and available online together with all other scripts used in this study.15

4 Results

Here, we present the results obtained from the execution of the study design pre-
sented in the previous section. In particular, we first present the overall statis-
tics of our dataset. Then we address RQ1 by obtaining an overview of the built
dataset. Next, we examine RQ2 by analyzing the distribution of vulnerabilities
between native and reused code.

4.1 RQ1 Projects’ Overview

In Table 3, we present the overall size of the dataset regarding the variables we
presented in Section 3.

Table 3. Dataset size

Variable Value

Projects 301
Reused dependencies 5 662
Cn 288 955
Cr 1 082 995
Ln 8 078 996
Lr 35 279 947
Vn 16 700
Vr 51 744
V Cn 7 820
V Cr 29 140
V Ln 987 421
V Lr 3 598 352

Figure 2 illustrates the distribution of the six variables we presented in Ta-
ble 2. The Figure comprises six boxplots in a 2× 3 matrix. Each column depicts
a type of variable (e.g., number of vulnerabilities) and each row the type of code
that the variable regards (native or reused). The number of outliers varied for
each variable from 6% to 14% (with an average of 11%) of the total amount
of projects. For visualization purposes, we do not present these outliers in the
boxplots.

In Figure 2, we observe that most projects lie in the lowest range of values, a
trend that is also visible among all variables. This observation is in line with the
descriptive statistics we presented in Table 4, since the mean values are closer
to the minimum than to the maximum. Based on these findings, we hypothesize

15 https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software
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Table 4. Descriptive statistics

Variable Minimum Maximum Mean Median Std. Deviation

Cn 3 36 587 960 132 3 641
Cr 4 118 110 3 598 1 715 7 836
Ln 1 002 798 308 26 841 3 710 88 054
Lr 92 2 525 867 117 209 59 679 192 377
Vn 0 2 230 55 5 222
Vr 0 4 175 172 48 351
V Cn 0 801 26 4 88
V Cr 0 2 660 97 28 211

that the number of vulnerabilities in source code increases with the size of the
project (measured in sloc).

We tested this hypothesis by performing independent T-tests. In our first set
of tests, we ordered the dataset based on size of native code (Ln) and compared
the means between the lower and upper half of the dataset for: (a) the number
of vulnerabilities in native code (Vn) (statistic = −3.87, p-value < 0.01) and (b)
the number of vulnerabilities in reused code (Vr) (statistic = −2.26, p-value =
0.02) The results of the tests show a statistical significant difference between
the two halves, and that a smaller design size (smaller sloc) also presents fewer
vulnerabilities. Similarly, for the second set of tests, we ordered the dataset
based on the size of the reused code (Lr) and compared the means between
lower and upper half of the dataset. The results are similar to the first test for
both variables.
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4.2 RQ2 - Association between Reuse and Vulnerabilities

Figure 3 depicts three boxplots that illustrate the distribution of the vulner-
ability density in the native, reused, and total code respectively. Comparing
the vulnerability density in the native code (left boxplot) and the vulnerability
density in the reused code (middle boxplot), we observe that the vulnerability
density mean is similar on both cases. However, there are more projects with
higher vulnerability density in native code than in reused code. We also note
that the overall density (right boxplot) is similar to the density in reused code
compared to the native code. This is due to the fact that the size of reused code
is considerably larger than native code, and the normalization procedure is done
after the vulnerabilities are combined.
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Fig. 4. Scatter plots of vulnerability density in native (left) and reused (right) code

To investigate RQ2 with regards to the association between the reuse ra-
tio and the vulnerability density, we calculated the Pearson correlation between
these variables, which are defined in Section 3.4. The result shows a correla-
tion coefficient of −0.18 (p-value < 0.01), indicating a weak inverse correlation
between the reuse ratio and the vulnerability density in a project. Figure 4 il-
lustrates the distribution of the vulnerability density in the native code (left
scatter plot) and in the reused code (right scatter plot) respectively, with regard
to the reuse ratio. Despite the fact that there is more reused code than native,
both cases have similar tendency in term of accumulation of vulnerabilities. In
particular, there is a clear tendency towards a lower vulnerability density in both
native and reused code.
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5 Discussion

In this section, we revisit and explain the findings presented in the previous sec-
tion, comparing them against related work where applicable. We also elaborate
on the implications of these observations to both researchers and practitioners.

5.1 Interpretation of the Results

In summary, we found that the amount of reused code is considerably larger com-
pared to native code. However, the vulnerability density is higher in native code,
i.e., it shows a higher count of vulnerabilities per sloc than reused code. These
observations culminate in the fact that the amount of vulnerabilities is mostly
associated with the reused code. Viewed simplistically this finding indicates that
more reuse leads to more vulnerabilities. However, more reuse is associated with
a lower vulnerability density. This result suggests that reused code is mature, and
has fewer vulnerabilities. Consequently, if we assume that reused code stands for
code that would otherwise have to be written from scratch, the increased reuse
of the more mature code may lead to a lower overall density of vulnerabilities.
These findings are in line with those of Mohagheghi et al. [15], who performed
a comparable study but in a industrial setting and also found a lower defect
density (which includes security vulnerabilities) in reused code when compared
to native code. Moreover, Mitropoulos et al. [14] found a positive correlation
between project size and the amount of vulnerabilities, which also aligns with
our findings related to native code.

Regarding the relatively larger amount of reused code, we note that this is
understandable due to the nature of our dataset, i.e., with multiple medium-
size projects. On one hand, dependencies (e.g., libraries) have a larger impact
on the project size as there may introduce a cascade of included dependencies.
On the other hand, the evolution of the project may not depend as much on
additional reuse, which decreases the reuse ratio. To assess that, we analyzed
the correlation between the reuse ratio and the size of native code (in sloc),
and found a moderate association (coefficient = −0.43, p-value < 0.01).

The results reported in this paper are based on abstractions observed on the
overall dataset. An interesting observation in the SpotBugs reports is type of
the most occurring types of security bugs. In Table 5, we list the top-5 most
recurrent types of vulnerabilities. We notice that both native and reused code
share the same types of vulnerabilities.

5.2 Implications for Researchers and Practitioners

Security assessment of source code is popular among practitioners and researchers.
In many cases, this process is executed before every release. In our study, we pro-
vided evidence that code reuse has a positive impact on the security of a software
system. Our dataset provides information related to reuse ratio and the existence
of potential vulnerabilities in 301 projects. Practitioners can consult the dataset
and gain insight on projects of their interest. Software developers can use this
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Table 5. Most occurring types of vulnerabilities

Security bugs description Reported in code

May expose internal representation by returning/incorporating
reference to mutable object

Native & Reused

Field is not final but should be Native & Reused
Field should be package protected Native & Reused
Method invoked that should be only be invoked inside a
doPrivileged block

Native & Reused

Classloaders should only be created inside doPrivileged block Native
Field is a mutable collection which should be package protected Reused

information to prioritize bug fixing and assign resources to improve their native
code with regards to security. Moreover, practitioners can employ the provided
automation scripts to perform a similar analysis on their own code base.

The findings of this study can also benefit researchers. In particular, the
provided dataset can be used to investigate research questions different from the
ones discussed in this study, e.g., clustering of projects based on one or more
of the available variables. Additionally, our proposed approach can be employed
to investigate other software quality attributes (e.g., correctness, performance)
since SpotBugs can also provide valuable information related to these quality
attributes. To examine this aspect, researchers can modify the provided scripts
to include bug reports from SpotBugs related to these attributes. Researchers
can also reuse our scripts to extend or create their own datasets.

6 Threats to Validity

In this section, we discuss the construct validity, the reliability, and the external
validity of our study. Threats to internal validity, are not applicable in this study
since it doesn’t examine causality. Construct validity examines the relationship
between the study’s observable object or phenomenon and its research questions.
Reliability examines if the study can be replicated and produce the same results.
Finally, external validity examines potential threats to generalizing the results
of this study to other cases.

Regrading construct validity, we can argue that static analysis can only detect
potential security defects and not actually exploitable vulnerabilities. However,
these reports are indicators of places that developers should focus when reviewing
the code. Furthermore, vulnerabilities reported in the reused code may not all
actually affect a project’s security, because some vulnerable elements may never
be executed by the native code. Moreover, the study can identify only black-box
reuse as defined by Heinemann et al. [9]. Black-box reuse requires developers to
include a binary version of the dependency, which in our case is a Java package
(jar or war file). White-box reuse is the incorporation of the third-party source
code into the native source code. This approach requires clone code-detection
like that performed by Heinemann et al. [9], which is out of the scope of this
study. Finally, projects were sorted based on their popularity (GitHub stars).
This criterion might not be indicative of the usage of these projects.
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Concerning reliability, we put our best effort to make this study easy to
replicate. The source code, along with detailed instructions, are available in this
link.16 The dataset variable values may vary based on the date of the study.
To retrieve the same values researchers should revert the Git repositories to the
date of this study (February 10th 2019). To mitigate any reliability risk, two
developers were involved and reviewed the process and the actual scripting.

Finally, concerning external validity, we identified two potential risks. Firstly,
the project selection was limited to one programming language (Java), and thus
generalization of our findings in other languages requires further investigation.
Secondly, despite the fact that Maven provided us a straight-forward way of
building the projects and easy access to the dependencies, it also limited our
dataset. Almost 45% of the initial project selection (1 000) failed to build with
Maven or was partially built, and was therefore excluded from the analysis.

7 Conclusion

In this paper, we reported a holistic multiple-case method study with the goal of
investigating the association between security vulnerabilities and software reuse
in open source projects. In particular, we looked into the distribution of vulner-
abilities among native code created by a project’s development team and reused
code introduced through third-party dependencies, also identifying character-
istics of the studied projects. Moreover, we examined the correlation between
the ratio of reuse and the density of vulnerabilities. For that, we constructed a
dataset with 301 of the most popular projects in the Reaper repository, from
which we collected information regarding the size of both native and external
code, as well as vulnerability information obtained from the static analyzer Spot-
Bugs. Unsurprisingly, the results suggest that larger projects are associated with
more vulnerabilities in both native and reused code. However, they also show
the more important fact that higher reuse ratio is correlated with a lower overall
vulnerability density.

In light of our study design and findings, we envisage several opportunities of
future work. On the one hand, it is desirable to extend the provided dataset and
incorporate projects from other programming languages and automated build
systems, such as Ant, Gradle, npm and pip. The extended dataset could be
used for replication and extension studies. The former could mitigate threats to
the validity of our study by providing triangulation of data and results. Exten-
sion studies could encompass the current or evolved datset, and explore more
in-depth research questions related to, for example, the features of larger and
smaller projects, or with more or less external code. On the other hand, the
automation scripts shared through this study could be turned into a tool that
could benefit both practitioners and researchers by providing a workbench for
in-house analyses or future studies.

16 https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software
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