
Software Reuse Cuts Both Ways:
An Empirical Analysis of its Relationship with Security

Vulnerabilities

Antonios Gkortzisa,∗, Daniel Feitosab, Diomidis Spinellisa

aDepartment of Management Science and Technology, Athens University of Economics and
Business, Patision 76, Athens, 10434 Greece

bCampus Fryslân, University of Groningen Wirdumerdijk 34, 8911 CE Leeuwarden, The
Netherlands

Abstract

Software reuse is a widely adopted practice among both researchers and prac-

titioners. The relation between security and reuse can go both ways: a system

can become more secure by relying on mature dependencies, or more insecure

by exposing a larger attack surface via exploitable dependencies. To follow up

on a previous study and shed more light on this subject, we further examine the

association between software reuse and security threats. In particular, we empir-

ically investigate 1 244 open-source projects in a multiple-case study to explore

and discuss the distribution of security vulnerabilities between the code created

by a development team and the code reused through dependencies. For that,

we consider both potential vulnerabilities, as assessed through static analysis,

and disclosed vulnerabilities, reported in public databases. The results suggest

that larger projects in size are associated with an increase on the amount of

potential vulnerabilities in both native and reused code. Moreover, we found

a strong correlation between a higher number of dependencies and vulnerabili-

ties. Based on our empirical investigation, it appears that source code reuse is

neither a silver bullet to combat vulnerabilities nor a frightening werewolf that

entail an excessive number of them.

∗Corresponding author
Email addresses: antoniosgkortzis@aueb.gr (Antonios Gkortzis), d.feitosa@rug.nl

(Daniel Feitosa), dds@aueb.gr (Diomidis Spinellis)

Preprint submitted to Journal of Systems and Software December 4, 2021

Keywords: Software reuse, Security vulnerabilities, Case study, Open-source

software.

1. Introduction

Software reuse is a part of the state-of-practice in software development,

being supported by practitioners and researchers alike. The dominant mobile

operating system, Android,1 is a modern, large-scale example of software reuse.

The operating system is highly modular, allowing smartphone providers to de-5

ploy flavors of it, reusing and customizing most of the functionality. For that,

the platform provides a set of more than 3 million Java libraries from the Maven

repository.2 Moreover, Android’s core is another great example, since it reuses

the Linux kernel, which is among the earliest examples of reuse. UNIX-based

systems emerged and evolved thanks to systematic reuse, from which some are10

still maintained until the present time.

However, software reuse is not a silver bullet. Some of its limitations are

not characterized as “concerning” but as “dangerous”, in the sense that an

important side-effect is the security risks that it may entail. In a study with

4 659 open-source software systems, Kula et al. [1] showed that, although more15

than 80% of the systems’ depended on outdated external libraries, 69% of the

interviewed developers were unaware of any security risks that were introduced

into the system due to incorporating the reused code. Moreover, in the State of

Open-Source Security report,3 Snyk shares the worrisome findings that between

2017 and 2019, they observed an increase of 88% in the number of disclosed20

vulnerabilities in open-source libraries.

As a concrete example, Heartbleed4 was a severe security vulnerability that

resided in OpenSSL cryptographic software library, which is a popular open-

1https://www.android.com/
2https://mvnrepository.com/repos/central
3https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-

over-two-years/
4https://nvd.nist.gov/vuln/detail/CVE-2014-0160

2

https://www.android.com/
https://mvnrepository.com/repos/central
https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-over-two-years/
https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-over-two-years/
https://nvd.nist.gov/vuln/detail/CVE-2014-0160

source component. The vulnerability enabled malicious users to read arbitrary

memory contents. By exploiting this vulnerability any user could get access to25

keys that protected communications, usernames and passwords, personal emails,

documents and messages. The bug was detected two years later, after it affected

the web servers that were powering 66% of the active web sites at that time.5

Another, more recent, example is the Equifax incident,6 in which hackers ex-

ploited a known vulnerability in a third-party Java library that Equifax reused,30

and stole personal private information of more than 147 million American citi-

zens.

Various initiatives try to battle this problem. GitHub introduced the Secu-

rity Alert for Vulnerable Dependencies7 service aiming to increase users’ aware-

ness and mitigate the potential security risks. Similarly, any Linux or BSD35

system notifies its users for available security updates in vulnerable versions of

installed packages and system libraries. Additionally, several popular security

assessment tools (e.g., SpotBugs, Snyk, owasp Dependency Check]) have plug-

ins available for integrating them in any build automation tool and Continuous

Integration (CI) service.40

Development teams can reuse software through third-party libraries to add

functionality to their system without the need to implement an available feature

from scratch. Software reuse can be performed in two ways: (a) black-box, in

which the reused code is in binary form and (b) white-box, in which the third-

party source code is inserted into the application. In black-box reuse, developers45

interact with the library through APIs provided by the third-party developers

without editing and maintaining its code. On the other hand, in white-box reuse,

developers are able to adjust the reused code and also select only a subset of it to

reuse. In our study we focus on black-box reuse, considering that developers do

5Netcraft, Web Server Survey, April 2014 - https://news.netcraft.com/archives/2014/

04/02/april-2014-web-server-survey.html
6https://www.equifaxsecurity2017.com/
7https://help.github.com/articles/about-security-alerts-for-vulnerable-

dependencies/

3

https://news.netcraft.com/archives/2014/ 04/02/april-2014-web-server-survey.html
https://news.netcraft.com/archives/2014/ 04/02/april-2014-web-server-survey.html
https://www.equifaxsecurity2017.com/
https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/
https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/

not have direct visibility of the library’s implementation and as a consequence,50

no awareness of the security risk, they might inherit. For the rest of the paper

with “reused code” we refer to black-box type of reuse, unless stated otherwise.

Despite the existence of security mishaps and the initiatives to counteract

them, to the best of our knowledge, there is a lack of large-scale studies that at-

tempt to obtain an overview of how security vulnerabilities are associated with55

code reuse, so as to understand the phenomenon. To start filling this gap, we

carried out a first exploratory study [2] to investigate how potential vulnerabil-

ities are distributed in open-source software-intensive systems, with regards to

native code, i.e., written in-house by the software development team, and reused

code, introduced through dependencies. We scope our research to answer con-60

cerns of software practitioners and researchers related to the potential security

risks when they select to reuse software. Specifically, we aim at answering the

following questions: 1) Will the third-party library that I want to reuse suffer

from security vulnerabilities? 2) How are security vulnerabilities in open-source

projects distributed between native and reused code? 3) Are third-party li-65

braries from well-known open-source communities less vulnerable than those of

less known ones? 4) Is the reuse frequency and the number of developers using

a third-party library associated with the amount of vulnerabilities in a specific

library?

The findings of our previous study suggest that software reuse has a positive70

effect on reducing security risks. However, this study had the following main

limitations. First, the observed relation was not strong, which indicated that

a larger sample size could enlighten the discussion, and further factors that

might explain the relation could be explored. Second, the investigation was

limited to potential vulnerabilities. Although potential vulnerabilities can be75

used as a proxy of lack of quality and risk due to unmet security levels, they may

not reflect the existing exploitable threats reported on repositories of disclosed

vulnerabilities.

This paper aims at further alleviating the aforementioned limitations by

analyzing a considerably larger set of open-source software systems and, not80

4

only compare the levels of security between the native and reused code, but

also triangulate the results by investigating an additional source of information,

namely disclosed vulnerabilities. To achieve this goal, we considered a new set

of 1 244 Java projects and collected both disclosed vulnerabilities (reported in

public datasets),8 and potential vulnerabilities (detected based through static85

analysis). Adding to the initial characteristics we investigated [2], we collected

information regarding four characteristics of the projects and dependencies of

our dataset, namely, 1) supported by well-known communities, 2) belonging

to an enterprise organization, 3) the number of their contributors, and 4) the

frequency of usage in projects. In addition to the statistical analysis presented in90

our previous work we extended our analysis to incorporate the aforementioned

dimensions.

The analysis of the produced dataset suggests that the native code seems to

be more vulnerable than reused code, although the reused code is dominant in

the majority of the projects. Additionally, 65% of the analyzed projects suffer95

from at least one security vulnerability introduced through a dependency. More-

over, the numbers of both disclosed and potential vulnerabilities are strongly

correlated to the number of dependencies.

In summary, the contributions of our work are: (a) an enhanced toolkit and

associated processes to build a dataset that fosters the investigation of security100

vulnerabilities with regard to software reuse in open-source Java projects, (b)

the aforementioned updated dataset per se, (c) an additional dataset on the

dependencies and its characteristics, and (d) an extended statistical analysis of

the dataset. We note that the toolkit and guidelines to reproduce the process

are available on GitHub9 and the dataset on Zenodo.10105

The rest of the paper is organized as follows: Section 2 presents the related

work. Section 3 describes our theoretical model and the approach for designing

8For example, the Common Vulnerabilities and Exposure repository, available at https:

//cve.mitre.org/
9https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software

10http://doi.org/10.5281/zenodo.2566054

5

https://cve.mitre.org/
https://cve.mitre.org/
https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software
http://doi.org/10.5281/zenodo.2566054

our study. Also, it presents the steps necessary to construct and analyze the

dataset. Section 4 presents our findings, which we further discuss in Section 5.

Section 6 presents the limitations of our study and Section 7 our conclusions.110

2. Related Work

As we could not find studies that are similar to ours, we broadened the scope

of this section to describe efforts dealing with software defects and vulnerabilities

in reused code.

Pashchenko et al. [3] studied the sap software ecosystem with regards to115

the vulnerable open-source dependencies that they use. Their dataset com-

prised the 200 most commonly used open-source Maven dependencies in their

systems. Regarding vulnerabilities, they included those that are disclosed in

public databases, such as, the cve database, and thus, their study does not

suffer from false positives vulnerability reports. However, the nonexistence of120

known vulnerabilities does not guarantee the absence of any other undetected

vulnerabilities. Their finding showed that 13% of the direct and transitive used

dependencies were reported with at least one disclosed vulnerability. In their

analysis they excluded non-deployed dependencies (e.g., test dependencies). In

the same direction, Neuhaus et al. [4] studied the Red Hat Linux (RHEL) dis-125

tribution and provided empirical evidence that certain packages (can be used

as dependencies) increase the risk of vulnerabilities in the system, while other

packages decrease it. Their goal is to support developers in decision making

regarding which package they should use in their native code. In a more recent

study, Zimmermann et al. [5] investigated security risks attached to JavaScript130

packages distributed via the npm package manager. Upon analyzing their de-

pendencies and maintainers, the authors found that, due to transitive vulnera-

bilities and lack of maintenance, individual packages pose a considerable threat.

They also showed that the number of vulnerabilities tends to increase with the

number of transitive dependencies. The JavaScript’s npm dependency network135

was investigated also by Decan et al. [6]. In their study, the authors analyzed

6

400 vulnerability reports covering a 6-year period and observed that the num-

ber of security vulnerabilities and the packages affected by them is growing over

time. Additionally, they reported that 54% of the packages in the network have

at least one version that is affected by a vulnerable transitive dependency.140

Regarding the effect that the size of the developers team have on the security

defects in the code, Meneely et al. [7] performed a study on the RHEL kernel.

The authors provided empirical evidence that large developers teams (with more

than nine members) and independent developer groups tend to introduce more

security defects in the code compared to smaller development teams or files145

developed by the core developers.

Mohagheghi et al. [8] performed an analysis on software defects data for

12 consequent releases of a large-scale telecom system developed by Ericsson.

Their goal was to examine how reuse, affects two factors of the system: 1) the

defect density (defined as defects per lines of code); and 2) the stability (defined150

as the degree of modification). The authors provided evidence that both defect

density and stability showed better results in reused components compared to

those in the non-reused components.

Additionally, Mitropoulos et al. [9] used FindBugs to perform a large scale

analysis on the Maven ecosystem. The outcome of their work is a dataset of155

the bugs (including security bugs) of more than 17 000 Maven dependencies

(155 000 considering all their versions). Their dataset can be used to analyze

the risk of using outdated libraries that exist in the Maven Central repository.

Although, their work does not examine reuse we find it relevant to mention, since

among the results, the authors reported a weak correlation between potential160

security vulnerabilities and the project size. In a similar direction, Shin et

al. [10] investigated the RHEL kernel and the Mozilla Firefox web-browser to

create a prediction model for detecting potentially vulnerable code based on the

following three code metrics: 1) complexity; 2) code churn; and 3) developer

activity.165

Concerning the effects of reusing code snippets from publicly available web

sources on the quality of the software, Fiscer et al. [11] reported that 15.4% of

7

the 1.3 million Android applications that they analyzed, contained code snip-

pets related to security, published on StackOverflow. 11 Interestingly, 97.9% of

those applications contained one or more vulnerable code snippets. Similarly,170

Abdalkareem et al. [12], analyzed 22 Android applications on the extent, and the

conditions under which, developers use code snippets copied from StackOver-

flow. Their findings showed that there was a statistically significant medium

increase of bug-fixing commits after reusing code from StackOverflow.

On the subject of detecting vulnerable code, Pham et al. [13] contributed175

towards the automated detection of suspicious code. Authors introduced Se-

cureSync, a tool that analyzes existing disclosed vulnerabilities, in open-source

systems and creates models in order to detect similar suspicious patterns in

other systems. The authors evaluated their approach by analyzing 176 releases

of 119 open-source projects and identified suspicious code in 51% of them. Prac-180

titioners have also made significant contributions in the area of classifying exist-

ing vulnerabilities as exploitable. Specifically, Ponta et al. [14] presented their

approach to identify exploitable vulnerabilities based on function call graphs.

Vulnerabilities in places of the reused code which are not accessible by the native

code can be considered of a lower risk for the system. Recently, they made their185

tool12 and the vulnerability dataset available for detecting known vulnerabilities

in Java and Python software systems.

11https://stackoverflow.com/
12https://sap.github.io/vulnerabilityassessmenttool/

8

https://stackoverflow.com/
https://sap.github.io/vulnerabilityassessmenttool/

Table 1: Comparison Against Related Work

Study Context
Focus on

security

Number of

projects
Language

Source of

vulnerabilities

Relate

security

to reuse

[3] Open-source Yes 200 Java Manual analysis Yes

[8] Proprietary No 1 Java, C &

Erlang

Defect reports Yes

[9] Open-source Yes 17 505 Java Static analysis No

[13] Open-source Yes 119 C & C++ Static analysis

and clone

detection

Yes

[14] Open-source Yes 500 Java Static and

dynamic

analysis

No

[7] Open-source Yes 1 C & C++ Vulnerability

reports

No

[10] Open-source Yes 2 C & C++ Vulnerability

reports

Partially

[4] Open-source Yes 1 C & C++ Vulnerability

reports

Yes

[5] Open-source Yes 5 386 239 JavaScript Vulnerability

reports

Partially

[6] Open-source Yes 610 000 JavaScript Vulnerability

report

Yes

[11] Open-source Yes 1 600 000 Java Static analysis Yes

[12] Open-source No 22 Java Commit

changes

No

Ours Open-source Yes 1 244 Java Static analysis

and

vulnerability

reports

Yes

In Table 1, we highlight the main differences of our study compared to

related work. In particular, to the best of our knowledge, the study reported

in this paper is the first to investigate the correlation between code reuse and190

vulnerabilities, as obtained by means of static analysis, specially in conjunction

with disclosed vulnerabilities, in multiple open-source systems.

9

3. Theoretical and Empirical Design

In this section, we present the theoretical model and the protocol of our case

study, which was designed according to the guidelines of Runeson et al. [15],195

and reported based on the Linear Analytic Structure [15].

3.1. Theoretical Model

Based on the insights we obtained from the state of the art on the analysis of

vulnerabilities and reuse in software-intensive systems (Section 2), we drew the

assumptions and designed the theoretical model for our study. The aspects of200

our analysis and their relationships are visualized in Figure 1. The relationships

presented in Figure 1 establish the main research questions that are investigated

in the following Sections.

Native code
construction

Code reuse

Vulnerabilities
in native code

Vulnerabilities
in reused code

Vulnerability
discovery
and fixing

decreasesdecreases

increasesincreases increases exposure toincreases exposure to

increasesincreases

decreasesdecreases

B

A

C

D

E

Figure 1: Theoretical model.

Initially, with relationship A we theorize that developers using existing avail-

able reusable libraries need to write fewer lines of code to satisfy the require-205

ments of the software system they are implementing. Among other reasons,

such an action may also be taken to avoid the accumulation of vulnerabilities

(relationship B), as a larger source code base (sloc) introduces more security

risks [16]. However, a side-effect of increasing the number of dependencies is

that source code size of the reused code also increases (relationship C), which210

may bring in more vulnerabilities [5, 16].

10

Despite a potential increase of software size due to reuse, we theorize that

code reused through open-source dependencies is more probable to have faster

detection and patching of security defects (relationship D) through the appli-

cation of the so-called Linus’s law: “given enough eyeballs, all bugs are shal-215

low” [17, p. 30], [18]. Consequently, if projects track their dependencies and

update them when necessary, there would be fewer security vulnerabilities over-

all (relationship E) [3].

In summary, our goal is to evaluate these relationships based on the findings

of our analyses on the produced datasets.220

3.2. Objective and Research Questions

The goal of the study was formulated according to the Goal-Question-Metric

(GQM) approach [19], and is described as follows: “analyze native and reused

code, for the purpose of evaluating, with respect to the differences in the

estimated and actual levels of security vulnerabilities, from the point of view225

of software developers, in the context of open-source software.” To fulfill this

objective, we have set three research questions (RQs), as follows:

RQ1: What size and reuse factors are related with potential security vulnera-

bilities of a project?

RQ1 aims at acquiring an overview of how two size factors and two reuse fac-230

tors are related to the potential security vulnerabilities of a project. In RQ1

we investigate the relationships B and C presented in Figure 1. Additionally,

we investigate how dependencies from well-known and less known communities

affect the number of potential vulnerabilities in a project.

RQ2: How are potential security vulnerabilities distributed between native and235

reused code?

RQ2 aims at investigating an important question correlated with software

reuse, namely, the extent to which reuse influences the security of a project. This

correlation is depicted with relationships A, B, and C. For that, we exploit static

11

analysis to identify potential vulnerabilities and investigate how native code240

developed by the project’s team and reused code stemming from dependencies

on third-party components contribute to the overall estimated security level.

RQ3: To what extent do open-source projects suffer from vulnerabilities intro-

duced through dependencies?

The purpose of RQ3 is to collect evidence of disclosed vulnerabilities that affect245

dependencies used in the projects as Figure 1 depicts with relationship C. To

achieve that, we analyze all dependencies with the owasp Dependency-Check

tool and report the findings.

RQ4: How are the characteristics of a dependency related to its potential and

actual vulnerabilities?250

RQ4.1: How is the reuse frequency of a dependency related to potential

and actual vulnerabilities?

RQ4.2: How is the community type of a dependency related to potential

and actual vulnerabilities?

RQ4 aims at investigating the validity of Linus’s law, by looking at whether the255

many eyeballs brought-in through increased reuse actually find and fix potential

and disclosed vulnerabilities, as presented in relationships D and E in Figure 1.

Additionally, RQ4 aims at investigating if the type of the dependency, i.e., from

a well-known community or an enterprise organization, is associated with the

dependency’s number of potential and actual vulnerabilities.260

3.3. Cases and Unit of Analysis

To answer the aforementioned research questions, we designed a multiple-

case study, i.e., one in which the multiple cases are also the units of analysis [15].

For this study, we chose open-source projects as cases and units of analysis.

We selected this particular type of study because the case granularity (i.e.,265

project-level) is sufficient, and multiple cases will provide statistical power to

12

the analysis. Moreover, the selected unit of analysis allows answering the set

research questions and pinpoint cases that researchers or practitioners may want

to investigate in more detail.

The cases were collected from GitHub Activity Data dataset13 which is pub-270

licly available on the Google Cloud Public Datasets.14 The GitHub Activity

Data 3TB+ dataset contains a full snapshot of the content of more than 2.8

million open-source GitHub repositories including more than 145 million unique

commits. Additionally, it contains over 2 billion different file paths, and the

contents of the latest revision for 163 million files, all of which are searchable275

with regular expressions. Users can execute queries on the dataset through the

Google BigQuery API.

3.4. Variables and Data Collection

To address the research questions, we built a containing two groups of vari-

ables for each unit of analysis: (a) project information; and (b) vulnerability280

information. We built the dataset by following a five-step procedure, which is

described in the following paragraphs together with the associated variables.

Figure 2 illustrates the data collection. A summary of the recorded variables

is presented in Table 2. Additionally to the aforementioned dataset, we built

a dataset that comprises (a) the dependency information, such as, the commu-285

nity type of its author (Enterpise and well-known); and (b) each dependencies’

potential and publicly disclosed vulnerabilities. A summary of the recorded

variables for the second dataset is presented in Table 3.

We note that the complete procedure is automated in a set of scripts available

on GitHub.15290

13https://console.cloud.google.com/marketplace/details/github/github-repos?

filter=solution-type:dataset&id=46ee22ab-2ca4-4750-81a7-3ee0f0150dcb
14https://cloud.google.com/public-datasets/
15https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software

13

https://console.cloud.google.com/marketplace/details/github/github-repos?filter=solution-type:dataset&id=46ee22ab-2ca4-4750-81a7-3ee0f0150dcb
https://console.cloud.google.com/marketplace/details/github/github-repos?filter=solution-type:dataset&id=46ee22ab-2ca4-4750-81a7-3ee0f0150dcb
https://cloud.google.com/public-datasets/
https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software

Table 2: List of Recorded Variables for the Projects dataset

Variable Description

Project full project name

D number of dependencies

CVE number of disclosed vulnerabilities introduced through dependencies

C number of classes in project

Cn number of native classes

Cr number of reused classes

L number of source lines of project

Ln number of source lines of code in native classes

Lr number of source lines of code in reused classes

Lre number of source lines of code in reused classes from an enterprise organization

Lrne number of source lines of code in reused classes from a non enterprise organi-

zation

Lrw number of source lines of code in reused classes from well-known communities

Lrnw number of source lines of code in reused classes from less-known communities

V number of potential vulnerabilities in project

Vn number of potential vulnerabilities in native code

Vr number of potential vulnerabilities in reused code

Vre number of potential vulnerabilities in reused classes from an enterprise orga-

nization

Vrne number of potential vulnerabilities in reused classes from a volunteer based

contribution

Vrw number of potential vulnerabilities in reused classes from well-known commu-

nities

Vrnw number of potential vulnerabilities in reused classes from less-known commu-

nities

VCn number of potentially vulnerable native classes

VC r number of potentially vulnerable reused classes

14

Dataset

Download
repositories and

detect build paths

2
Build projects
and retrieve

dependencies

3Build projects
and retrieve

dependencies

3

Detect potential
vulnerabilities

5

Successfully
built projects

Parse
vulnerability

reports

6
Parse

vulnerability
reports

6

open source projectsopen source projects

Filter
projects

1
Filter

projects

1

open source projects

Filter
projects

1 Local copiesLocal copiesProject listProject list

Collect project
information

4

Collect project
information

4

SLOC
measurements

Vulnerability
reports

Retrieve disclosed
vulnerabilities

5b

Retrieve disclosed
vulnerabilities

5b

OWASP
reports

Build path listBuild path list

Figure 2: The dataset construction procedure.

Table 3: List of Recorded Variables for the Dependencies dataset

Variable Description

Dependency full dependency name

W provided by an open-source well-known community

E provided by an enterprise Github organization

CVEd number of disclosed vulnerabilities

V number of potential vulnerabilities in dependency

P number of projects this dependency is used in

Cb number of contributors in projects that use this dependency

Step 1: Filter projects.. First, we queried the GitHub Activity Data database16

and selected the projects that met the following criteria: 1) contain Java code,

and 2) contain at least one Apache Maven17 build automation configuration

16https://console.cloud.google.com/marketplace/details/github/github-repos?

filter=solution-type:dataset&id=46ee22ab-2ca4-4750-81a7-3ee0f0150dcb
17https://maven.apache.org/

15

https://console.cloud.google.com/marketplace/details/github/github-repos?filter=solution-type:dataset&id=46ee22ab-2ca4-4750-81a7-3ee0f0150dcb
https://console.cloud.google.com/marketplace/details/github/github-repos?filter=solution-type:dataset&id=46ee22ab-2ca4-4750-81a7-3ee0f0150dcb
https://maven.apache.org/

file, (i.e., pom.xml). We selected Java as a programming language so as to take

advantage of automated build support provided by Maven, and the security295

violation identification capabilities of the SpotBugs18 tool and the owasp De-

pendency Check tool.19 Maven is well-established tool, and it allowed us to

automate the build process of multiple projects and retrieve their dependencies.

Both operations were necessary for collecting the potential vulnerabilities. Fi-

nally, we queried the GitHub api20 and retrieved the stars for each project of300

our aforementioned list. We used the stars as an indicator of popularity and we

sorted the projects based on that criterion.

Step 2: Download repositories and detect build paths.. In this step, we

selected the 3 500 most popular GitHub projects of the list that we generated in

Step 1. We selected a large amount of projects to improve the representative-305

ness of the study sample towards the population and strengthen the statistical

analyses. Next, using the Git tool, we cloned locally the projects. Several

projects consist of many modules and components written in various program-

ming languages and managed by different build automation tools. To identify

the projects that are in the scope of our analysis, we created a a tool that auto-310

matically detects the root Maven configuration file. We manually resolved cases

with multiple root build paths.

Step 3: Build projects and retrieve dependencies.. Working on the lo-

cal copies of the repositories, we built each project. To accelerate this step

we skip 1) testing tasks, 2) Java documentation generation tasks, and 3) any315

static analysis code review tool execution (such as checkstyle21 and pmd).22

When the building process is complete, the generated compiled package (i.e.,

a .jar or .war file) is stored in the local Maven repository (the .m2 directory

18https://bugs.github.io/
19https://www.owasp.org/index.php/OWASP_Dependency_Check
20https://developer.github.com/v3/
21https://github.com/checkstyle/checkstyle
22https://pmd.github.io/

16

https://bugs.github.io/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://developer.github.com/v3/
https://github.com/checkstyle/checkstyle
https://pmd.github.io/

by default). The dependencies (along with any transitive dependencies) that a

project defines in its configuration file are also downloaded and stored in the320

local Maven repository. From the initial 3 500, we discarded 1 181 projects that

failed to build. The main failure reasons were: (a) Java versions incompatibili-

ties, (b) non-accessible Maven dependencies, and (c) compilation errors. For the

remaining 2 319 successful builds, we created and stored their transitive depen-

dency trees, i.e., the paths to the packages of the project and its dependencies.325

The dependency trees were retrieved with the use of the mvn dependency:tree

Maven command.

Step 4: Collect project information.. In this step, we analyzed each suc-

cessfully build project’s dependencies’ tree that was produced in the previous

step. With this process we collected the first groups of variables: project, D,330

Cn, Cr, Ln and Lr (see their definitions in Table 2). For that, we collected the

class files from each jar file and also used them to retrieve the source lines of

code (sloc), which is estimated based on the number of the statements. When

analyzing the dependencies we count only those that are deployed with the ap-

plication or used at runtime. These are characterized as compile, runtime,335

provided in the corresponding Maven configuration file. All other dependen-

cies are ignored since they do not cause an exploitable threat in the deployed

application.

Additionally, we analyzed every project and dependency individually and

detected those that are maintained by an enterprise organization. For this pro-340

cess we used the dataset provided by Spinellis et al. [20] which contains a list

of 17 252 identified Github enterprise repositories. The dataset defines as an

enterprise project “one that is likely to be mainly developed by financially com-

pensated employees, working full time under an organization’s management.”

Furthermore, during this step, we compiled a list of well-known open-source345

communities that are popular in Github, e.g., Apache, Google, Facebook, Mi-

crosoft, MySql and Eclipse. Well-known communities are software development

groups that provide high-quality open-source software systems that are widely

17

used by other developers and teams (e.g., the Apache web-server, the Facebook

React web-framework, the MySql community database, the Microsoft dotnet350

framework and the vscode editor. To detect which dependencies are maintained

by well-known communities, we mapped the Maven unique identifier of each de-

pendency (i.e., groupId) to the groupIds of projects belonging to the Github

organizations in the list of well-known communities list.

Finally, we performed the next three filtering steps: 1) identified and dis-355

carded projects that had no dependencies, 2) discarded projects that had fewer

than 1 000 lines of native code, and 3) projects that were used in their entirety

only as dependencies in other projects. For example, aws/aws-lambda-java-libs

and spring-cloud/spring-cloud-(bus|stream|netfix) appear as dependen-

cies in the dependency-trees of other projects of our dataset. Applying the three360

filtering rules led us to a final dataset of 1 244 projects.

Step 5: Detect potential vulnerabilities.. To detect potential vulnerabili-

ties we performed a static analysis of the each project’s code base. This type of

analysis gives us the ability to assess a large set of projects without the need of

test cases and execution scenarios. The latter techniques can prove to be time365

consuming and prone to missing cases in code coverage. On the other hand,

static analyzers look for patterns in the code base of a system while covering all

possible execution paths. Kulenovic et al. [21] compared different static analysis

methods for detecting security vulnerabilities in code bases. They found that

there is a constant improvement of the algorithms used for static analysis. Con-370

sequently, static analyzers have better performance in terms of accuracy and

precision when detecting security vulnerabilities.

For selecting our analyzer we consulted the Open Web Application Security

Project’s (OWASP) list of static analysis tools,23 considering only those that:

1) can analyze Java code, 2) can operate offline, 3) are actively maintained by375

the open-source community, and 4) have rules for detecting patterns of potential

23https://owasp.org/www-community/Source_Code_Analysis_Tools

18

https://owasp.org/www-community/Source_Code_Analysis_Tools

security violations. Based on the aforementioned criteria, we selected the static

analyzer SpotBugs24 (v3.1.11) [22, 23, 24]. This tool identifies violations of good

coding practices [22] by creating rules based on bug patterns. There are nine

categories of rules and two of them related to security: Security and Malicious380

Code. Moreover, based on the completeness of a rule matching on a bug de-

tection, SpotBugs classifies this detection into one of three levels of confidence

(low, medium, high). The tool has already been evaluated in independent stud-

ies [22], [25] and [26], which reported an average precision of 66%. Additionally,

using only medium or high level of confidence in the detection rules the preci-385

sion showed to be significantly increased. Nevertheless, SpotBugs like any static

analysis tool, is still prone to introducing noise (false positives) to the data col-

lection. However, other studies showed that SpotBugs findings can be valuable

pointers to parts of the system that need to be maintained [27, 28, 22, 29, 30, 23].

To further enhance the security related detection capabilities of SpotBugs,390

we included its plugin FindSecBugs.25 This plugin adds several new bug pat-

terns related to the Open Web Application Security Project (owasp) top-10 vul-

nerabilities26 and several other listed in the Common Weaknesses Enumerations

(cwe) list.27 cwe is a community-list of common software security weaknesses

types, and serves as a common language for classifying security vulnerabilities395

in software systems. The combination of SpotbBugs core functionality28 and

FindSecBugs’ specialized bug patterns29 offers a capability to detect 163 po-

tential security vulnerabilities. To perform an analysis, SpotBugs requires the

path to the compiled Java project and its dependencies. We acquired this infor-

mation from the lists that we created in Step 3. Next, SpotBugs generates an400

xml file that reports all the potential vulnerabilities in the given Java classes

24This is the well-known FindBugs tool further developed under a new name.
25https://find-sec-bugs.github.io/
26https://www.owasp.org/index.php/Top_10-2017_Top_10
27https://cwe.mitre.org/
28https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#malicious-

code-vulnerability-malicious-code
29https://find-sec-bugs.github.io/bugs.htm

19

https://find-sec-bugs.github.io/
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://cwe.mitre.org/
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#malicious-code-vulnerability-malicious-code
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#malicious-code-vulnerability-malicious-code
https://find-sec-bugs.github.io/bugs.htm

for both native code base and dependencies. Due to failures in the SpotBugs’

analysis, we excluded 260 projects during this step. The two most commons

of errors were: (a) executable files missing compiled code, and (b) Java version

incompatibilities.405

Finally, we analyzed with SpotBugs all dependencies detected in Steps 3 and

4, and collected their potential vulnerabilities. We analyzed the dependencies

as standalone jars, to avoid including vulnerabilities from other dependencies

related to the one that we analyzed. We applied the same filtering that we

presented earlier in this Step on the SpotBugs findings for the dependencies.410

Step 5b: Retrieve disclosed vulnerabilities.. We performed this step in

parallel with Step 5. The purpose of this step is use the owasp Dependency-

Check tool in order to analyze all dependencies and to retrieve the information

for its disclosed vulnerabilities. The owasp Dependency-Check tool reports the

unique identifier (cve) for the dependency of our interest and the complete415

tree of transitive dependencies. We exclude disclosed vulnerabilities that refer

to non-Java transitive dependencies. This step populated the variable CVE in

Table 2.

Step 6: Collect vulnerability information.. In this final step, we collected

the second groups of variables for each project: Vn, Vr, VCn, VC r, VLn, and420

VLr. For that, we parse each xml report that we generated by SpotBugs in

Step 5. From these reports we select only the potential security vulnerabilities

and we discard all other data. Then, we aggregate the results separately for the

native source code and the reused source code. Next, we parse the json reports

that owasp Dependency Check tool generated for each dependency in Step 5b425

and assign a list of unique disclosed vulnerabilities (cves) to each project. In

this list we include only vulnerabilities related to Java code and dismiss all

others.

20

3.5. Analysis Procedure

To investigate the collected data, we performed various statistical analyses.430

First, to answer RQ1, we calculated the descriptive statistics on all collected

variables, and used linear regression analysis for four selected variables asso-

ciated with project size and reuse. Additionally, we investigate how the over-

all amount of vulnerabilities are associated with dependencies maintained by

different communities: (a) well-known vs. less-known, and (b) enterprise vs.435

volunteer-based. Next, to answer RQ2, we first calculated the ratio of reuse Rr

and vulnerabilities density Dv as described in (1a) and (2b) below.

Rr =
Lr

Ln + Lr
(1a), and Dv =

Vn + Vr

Ln + Lr
(1b) (1)

Then, similarly with RQ1, we performed a linear regression analysis to evaluate

the correlation between reuse and security vulnerabilities.

Regarding RQ3, we collected the disclosed vulnerabilities of each projects’440

dependencies and performed a linear regression analysis between the number

of dependencies and the number of disclosed vulnerabilities. Finally, to answer

RQ4, we collected data related to the use frequency of each dependency in our

dataset and we performed a linear regression analysis on the use frequency and

its number of vulnerabilities.445

We note that this complete procedure is automated and available online

together with all other scripts used in this study.30

4. Results

In this section, we present details about the obtained dataset and answers to

the study’s results research questions. Based on our unit of analysis, i.e., each450

project, and with regards to the variables we presented in Section 3 we obtained

the descriptive statistics shown in Table 4.

30https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software

21

https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software

Table 4: Descriptive Statistics

Variable Sum Min Max Mean Median σ Dataset

D 11 328 1 182 14 751 8 18 144 Dependencies

CVE 1 728 0 102 7 508 2 12 Projects

C 10 031 775 9 191 859 8 064 3 835 14 237 Projects

Cn 2 616 877 3 184 717 2 103 190 9 001 Projects

Cr 7 414 898 2 120 000 5 960 2 862 9 398 Projects

L 315 948 364 1 231 3 619 934 253 977 124 871 372 688 Projects

Ln 69 350 897 1 000 2 650 782 55 748 5 210 191 022 Projects

Lr 246 597 467 3 3 330 189 117 209 96 265 286 261 Projects

Lre 96 144 679 0 893 172 77 286 39 211 107 552 Projects

Lrne 150 810 685 0 2 531 786 121 230 50 470 208 833 Projects

Lrw 112 555 320 0 2 132 518 90 478 38 364 162 380 Projects

Lrnw 134 319 010 0 2 004 584 107 973 47 687 164 581 Projects

V 828 315 0 10 064 665 301 972 Projects

Vn 212 873 0 8 790 171 23 580 Projects

Vr 615 442 0 7 955 494 177 747 Projects

Vre 188 732 0 2 183 151 55 240 Projects

Vrne 426 710 0 5 772 343 95 591 Projects

Vrw 283 137 0 3 940 227 56 427 Projects

Vrnw 332 305 0 4 433 267 85 444 Projects

VCn 150 241 0 6 670 120 19 413 Projects

VC r 451 375 0 5 082 362 145 541 Projects

CV Ed 10 074 0 55 1 0 3 Dependencies

Vd 860 027 0 4 716 92 18 259 Dependencies

P 18 888 1 124 2 1 4 Dependencies

Cb 830 975 1 4 589 89 20 236 Dependencies

4.1. RQ1 - Relationship between Vulnerabilities and Size and Reuse

To investigate how the factors of 1) source code size (sloc), 2) number of

classes, 3) number of dependencies, 4) reuse ratio are related to the number455

of potential vulnerabilities, we performed a multivariate ordinary linear regres-

sion with standardized beta coefficients on the aforementioned variables. The

summary of this analysis is presented in Table 5.

22

Table 5: Multivariate Regression Analysis for Potential Vulnerabilities

Variable Description coeff p-value

L Number of lines of code 0.7882 0.000

C Number of classes 0.0125 0.699

D Number of dependencies 0.1225 0.000

Rr Reuse ratio 0.0399 0.004

The results show that the source code size (sloc) is strongly correlated to

the number of potential vulnerabilities. Interestingly, the number of classes460

appears to have no effect on the potential vulnerabilities. Although this may

seem to contradict previous findings, we note that the majority of our dataset

comprise smaller projects, which may encapsulate more functionality in single

classes. Regarding the reuse factors, there is no statistical evidence that they

are correlated with the number of potential vulnerabilities as both the number465

of dependencies and reuse ratio, have below-weak correlation.

In order to investigate how dependencies from well-known communities con-

tribute to the total amount of potential vulnerabilities, we calculated the well-

known ratio, which is the sloc of well-known communities divided by the to-

tal SLOC of the reused code. We then analyzed the correlation between the470

number of potential vulnerabilities and the well-known ratio, performing a non-

parametric test. The results (Kendall’s τ ≈ 0.05, p-value ≈ 0.02) show that the

number of potential vulnerabilities is not correlated to the well-known ratio.

RQ1: The multivariate linear regression provides empirical evidence for the

common belief that the number of potential vulnerabilities increases along with

the source code size (sloc). However, it shows no evidence that the number of

potential vulnerabilities is correlated with reuse factors. Similarly, the number

of potential vulnerabilities shows no correlation with the type (well-know and

less well-known) of the reused code.

4.2. RQ2 - Distribution of Vulnerabilities in Native and Reused Code475

Figure 3 depicts three boxplots, which illustrate the distribution of the vul-

nerability density (per 1 000 lines of code) in the native, reused, and total code

23

Native
vulnerabilities density

Reused
vulnerabilities density

Overall
vulnerabilities density

0

2

4

6

8

10

Figure 3: Boxplots of vulnerability density in native code (left), reused code (center), and

overall (right)

respectively. Comparing the vulnerability density in the native code (left box-

plot) and the vulnerability density in the reused code (middle boxplot), we

observe that the vulnerability density median is higher in native code. Also,480

there are more projects with higher vulnerability density in native code than in

reused code.

Furthermore, we notice that the overall density (right boxplot) is similar to

the density in reused code compared to the native code. This is due to the fact

that the size of reused code is considerably larger than native code, and the485

density is calculated after the vulnerabilities and corresponding code sizes re

combined.

To investigate RQ2 with regards to the correlation between the reuse ratio

and the vulnerability density, we performed an ordinary linear regression with

standardized coefficients. The result (statistic = −0.0221, p-value = 0.436)490

shows no evidence of a statistically significant relationship between these two

variables. Further interpreting the results, one can suggest that there is no

correlation between relationships AC and B as depicted in Figure 1. The current

dataset does not provide strong evidence to either confirm or deny whether

24

projects with higher reuse ratio tend to have lower vulnerability density.495

To further investigate the distribution of the potential vulnerabilities be-

tween the native and reused code we list the most occurring types of vulner-

abilities as reported by the SpotBugs tool. In Table 6, we list the integrated

top-10 recurrent types of potential vulnerabilities in native and reused code. For

each type of potential vulnerability we calculated its density, as the number of500

detected potential vulnerabilities per 10 000 lines of code. In their description

we include a reference number to the cwe software weaknesses types list.31

Table 6: Densities of Most Occurring Types of Vulnerabilities

Vulnerability description
Densities in code

Difference
Native Reused

1 Potential CRLF Injection for logs (CWE-93/117) 0.150 0.086 25.72%

2 Potential Path Traversal (file read) (CWE-22) 0.128 0.139 −7.96%

3 May expose internal representation by returning

reference to mutable object

0.093 0.076 22.30%

4 May expose internal representation by

incorporating reference to mutable object

0.092 0.071 29.53%

5 Information Exposure Through An Error

Message (CWE-209/211)

0.060 0.064 −6.77%

6 Field is not final but should be 0.048 0.076 −36.62%

7 Predictable pseudo-random number generator

(CWE-330)

0.039 0.048 −19.23%

8 URLConnection Server-Side Request Forgery

(SSRF) and File Disclosure (CWE-73/918)

0.035 0.056 −37.98%

9 Field should be package protected 0.022 0.025 −9.19%

10 Format String Manipulation (CWE-134) 0.020 0.012 30.73%

11 Object de-serialization is used (CWE-502) 0.010 0.064 −84.13%

12 MD2, MD4 and MD5 are weak hash functions

(CWE-327)

0.006 0.035 −82.08%

In Table 6 we observe that potential vulnerabilities that belong to the last

two types (11 and 12) were detected in the reused code more often than in the

31https://cwe.mitre.org/data/definitions/699.html

25

https://cwe.mitre.org/data/definitions/699.html

Disclosed Vulnerabilities in Projects

0

20

40

60

80

100

Ob
se

rv
ed

 v
al

ue
s

Figure 4: Violin plots of number of disclosed vulnerabilities in projects

native code with a difference of > 80%. Similarly, for the types 6, 7 and 8 we505

observe a moderately greater frequency of detection in the reused code. On the

contrary, for types 1, 3, 4 and 10, we observe a moderately greater frequency of

appearances in the native code. Regarding types 2, 5 and 9 we observe similar

frequency of appearance in both native and reused code.

RQ2: The median vulnerability density is higher in native code. However, the

results do not present any statistically significant correlation between the reuse

ratio and the vulnerability density.

510

4.3. RQ3 - Disclosed Vulnerabilities in Reused Code

The first step to answer RQ3 was to analyze all dependencies in our dataset

with the owasp Dependency-Check tool. The results showed that, at the time

of the analysis, 2 821 out of the 11 328 dependencies (24.9%) were reported to

have at least one disclosed vulnerability. Consequently, mapping those findings515

to projects, we accounted for 65% of projects being vulnerable through their

dependencies.

Figure 4 presents the distribution of number of disclosed vulnerabilities in

our dataset. It is clear that the majority of projects have very few disclosed

vulnerabilities.520

However, this is a concerning finding, because even one vulnerability can

lead to a security breach with severe consequences. This is also interesting,

26

because many open-source projects use outdated third-party dependencies with

disclosed vulnerabilities; see references [1] and [14]. Disclosing vulnerability

details along with the code patch fixing the security defect, motivates users to525

update to a newer, secure version. On the other hand, the disclosure also gives

time and necessary details for malicious users to prepare attacks that target

exploiting those specific defects, as happened in the Equifax incident.32

To investigate if the number of disclosed vulnerabilities in a project is cor-

related with the number of dependencies used in this project we performed530

a linear regression analysis between these two variables. The results, (statis-

tic = 0.6151, p-value < 0.001) show that the number of disclosed vulnerabilities

is strongly correlated to the number of dependencies. Similarly, with respect

to potential vulnerabilities, we performed the linear regression analysis. The

results (statistic = 0.7730, p-value < 0.001) are in line with the previous analy-535

sis and show a strong correlation between the number of dependencies and the

potential vulnerabilities.

These findings suggest that a larger amount of dependencies used in a project

may be correlated with a higher risk of bringing on board disclosed vulnerabil-

ities. This can be described as the “effect of complex configuration”, because540

developers select the direct dependencies in their projects but are unaware of

the number of indirect dependencies brought in the project through other de-

pendencies. Kula et al. [1] interviewed several developers that affirmed being

unaware of security risks in the code that they reuse. Additionally, Snyk re-

ported that 78% of disclosed vulnerabilities are found in indirect dependencies.33545

32https://www.wired.com/story/equifax-breach-no-excuse/
33https://snyk.io/blog/78-of-vulnerabilities-are-found-in-indirect-

dependencies-making-remediation-complex/

27

https://www.wired.com/story/equifax-breach-no-excuse/
https://snyk.io/blog/78-of-vulnerabilities-are-found-in-indirect-dependencies-making-remediation-complex/
https://snyk.io/blog/78-of-vulnerabilities-are-found-in-indirect-dependencies-making-remediation-complex/

RQ3: The analysis shows that 24.9% of the dependencies have at least one

reported disclosed vulnerability. These vulnerable dependencies affect 65% of

the projects analyzed. Additionally, the regression analysis showed that the

numbers of both disclosed and potential vulnerabilities are strongly correlated

to the number of dependencies included in a project.

4.4. RQ4 - Dependencies’ Use frequency

The dataset analyzed in this RQ regards the 11 328 unique dependencies

that appeared in our population of 1 244 projects. For these dependencies,550

we collected the 1) disclosed vulnerabilities as reported and collected by the

owasp Dependency-Check tool, 2) the potential vulnerabilities as reported by

the SpotBugs tool, 3) if they are maintained by a well-known community or an

enterprise organization, and 4) the total number of contributors of the projects

that reuse these dependencies.555

Table 7: Regression Analysis for Dependencies’ Use Frequency

Variable Description coeff p-value

V Potential vulnerabilities −0.0326 0.083

CVE Disclosed vulnerabilities −0.0355 0.059

To investigate if the use frequency is correlated with the number of disclosed

and potential vulnerabilities we performed a linear regression analysis on these

variables. The results are presented in Table 7 and show that there is no sta-

tistically significant evidence to correlate the number of disclosed and potential

vulnerabilities with their use frequency. There is no evidence that more popular560

dependencies have more disclosed vulnerabilities reports or have a lower number

of potential vulnerabilities.

To further investigate Linus’s Law, we estimate the total number of contrib-

utors in projects reusing a dependency as the number of eyeballs that might

detect a vulnerability. We tested how the total amount of contributors is as-565

sociated with the potential and the disclosed number of vulnerabilities in the

dependencies by calculating Kendall’s non-parametric correlation. In Table 8,

28

we report the results (τ and p-value) of the Kendall correlation on 1) the overall

dependencies dataset population, 2) dependencies from well-known communi-

ties, 3) dependencies from enterprise organizations, and 4) from dependencies570

that are both well-known and from an enterprise organization.

Table 8: Regression Analysis for Dependencies’ Use Frequency

Dataset
Potential vulnerabilities Disclosed vulnerabilities

τ p-value τ p-value

All dependencies −0.01 0.28 −0.10 0.00

Well-known communities −0.02 0.06 −0.13 0.00

Enterprise organizations −0.03 0.02 −0.14 0.00

Both well-known and

enterprise

−0.05 0.00 −0.22 0.00

The τ and p-values of the executed correlation tests show no strong evidence

that the type of the community (i.e., well-known, enterprise) is correlated to the

number of its potential vulnerabilities. While for the actual vulnerabilities the

statistical evidence is poor for each individual type community, we observe a575

very weak correlation for dependencies that belong both in a well-known com-

munity and an enterprise organization.

RQ4: The statistical analysis showed that there is no evidence that correlates

the use frequency of a dependency with its security aspect. Furthermore, the

results showed only a very weak correlation between the number of eyeballs asso-

ciated with a dependency and its disclosed vulnerabilities: only for dependencies

that belong in both well-known communities and enterprise organizations.

5. Discussion580

In this section, we revisit and explain the findings presented in the previ-

ous section, comparing them against related work where applicable. We also

elaborate on a point that stems from the discussion, namely, the special case

of enterprise open-source projects. Finally, we elaborate on the implications of

these observations to both researchers and practitioners.585

29

5.1. Interpretation of the Results

We found that the amount of potential vulnerabilities of a project is strongly

correlated to its source code size (sloc). This finding is in line with what

Chowdhury and Zulkernine [16] observed in their study on five consequent ver-

sions of the Mozilla Firefox web browser. Similarly, Mitropoulos et al. [9] found590

a positive correlation between project size and the amount of vulnerabilities,

which also aligns with our findings. Furthermore, our findings agree with those

of Yu et al. [31] in that the more a project evolves and adds functionality the

more it accumulates defects. Both findings support Lehman’s Seventh Law,

which states that the quality of a software product decreases with time unless595

it is restructured [32, 33]. If we assume that reused code stands for code that

would otherwise have to be written from scratch, vulnerabilities will ultimately

arise either from native or reused code. Depending on the security expertise of

the development team, one will have, then, to choose between two strategies.

On the one hand, a wiser strategy may be to avoid reuse for developing com-600

ponents with strict security requirements and manage the vulnerability threat

internally. On the other hand, it may be desirable to reduce vulnerability risks

by reusing as much as possible.

To discuss this subject further, we focus on the results of RQ2, which sug-

gest the presence of a higher vulnerability density in native code, i.e., higher605

count of vulnerabilities per sloc than reused code. However, our results also

suggest that the distribution of vulnerabilities between native and reused code

is not homogeneous among the studied projects. Perhaps, projects with similar

vulnerability density may have features in common. For example, Mohagheghi

et al. [8], who performed a comparable study but in an industrial setting, found610

a lower defect density (which includes security vulnerabilities) in reused code

when compared to native code. In summary, for the time being these findings

place a heavier weight for the decision making on the development team, which

has to verify the maturity of reused code and balance it with in-house expertise

in writing secure code.615

Regarding the relatively larger amount of reused code, we note that this is

30

understandable due to the nature of our dataset, i.e., with multiple medium-

size projects which is observable in Table 4. On one hand, dependencies (e.g.,

libraries) have a larger impact on the project size as they may introduce a

cascade of included dependencies. On the other hand, the evolution of the620

project may not depend as much on additional reuse, which decreases the reuse

ratio.

Turning to disclosed vulnerabilities, our analysis showed a significantly larger

percentage of affected dependencies (24.9%) compared to that reported in re-

lated work. In particular, Pashchenko et al. [3] found that 12.4% of their studied625

dependencies were vulnerable. This difference can be explained based on the

difference between the two datasets. In our dataset, we study dependencies

used in open-source projects while Pashchenko et al. [3] study dependencies in

proprietary SAP projects. A possible explanation is that enterprise projects

are more selective on the use of third-party code, and they tend to update their630

versions more often. To shed further light in this matter, in the next section, we

explore the differences between the reuse of third-part code on volunteer-based

and enterprise open-source communities.

With respect to the use frequency of dependencies, we were not able to clearly

identify a correlation with the number of potential or disclosed vulnerabilities.635

Consequently, we could not establish from our data that Linus’s law [17, p. 30]

does in fact hold. It seems that users of third-party code are not necessarily

contributors that can catch and fix security vulnerabilities and thus support the

aforementioned law. However, absence of evidence is not evidence of absence. A

related line that might be worth pursuing, would be to investigate if a project’s640

popularity is associated with how fast security defects are detected and fixed.

In that direction, van Liere [34] studied the Firefox community and found that

a large community of bug reporters can be associated with quicker bug fixing,

while the addition of new software developers incurs fixing delays. However, with

a similar scope, Bissyande et al. [35] performed a large scale study on 20 000645

GitHub projects and found that the correlation between bug fixing time and

the amount of issue reporters is negligible (0.16). These partially contradicting

31

results show that more research in this subject is paramount and should also

consider other indicators of project popularity (e.g., number of downloads, forks,

and positive reviews).650

Finally, we investigated to what extent the amount of potential vulnerabili-

ties is correlated with the amount of disclosed vulnerabilities. A linear regression

analysis showed that there is a medium correlation between the two factors. De-

spite the fact that disclosed vulnerabilities cannot be tracked to code level in

this dataset, the results show that a high number of potential vulnerabilities is655

an indicator of higher risk of exploitable vulnerabilities.

5.2. Comparison between Enterprise and Volunteer-based Projects

In the previous section, we noted that different practices between community

types could reflect on a more selective process to manage reuse. In particular,

one may wonder how enterprise open-source projects compare to volunteer-660

based ones. As our dataset encompasses both types of projects, it is feasible

to perform such comparison. For that, we used the same process to identify

dependencies belonging to enterprise organizations (see Section 3.4, Step 4) to

also identify enterprise projects. The classification of each project (into ‘enter-

prise’ or ‘volunteer-based’) is also available in the main dataset. We used this665

extension of the dataset to revisit the research questions in which we perform

project-level analyses (i.e., RQ1–RQ3). In Table 9, we present a summary of

the descriptive statistics to briefly compare the two sub-populations.

32

Table 9: Descriptive Statistics for Enterprise and Volunteer-based projects

Variable
Enterprise(N = 252) Volunteer-based (N = 992)

Mean σ Mean σ

Contributors 42 94 21 42

D 18 24 14 16

CV E 8 12 7 12

L 284 564 442 846 246 181 352 450

Ln 44 501 175 598 58 616 194 783

Lr 240 062 383 684 187 564 254 663

V 725 1 052 650 950

Vn 123 374 183 621

Vr 602 884 467 884

Regarding RQ1, we analyzed the relationship between the number of vulner-

abilities and size and reuse for each of the two groups of projects and did not670

find a significant difference. Regarding RQ2, we examined the distribution of

vulnerabilities between native and reused code and, although we noticed a lower

density of vulnerabilities in native code on enterprise projects, we also found it

not to be statistically significant. Finally, regarding RQ3, we first looked into the

number of projects affected by disclosed vulnerabilities and found the percent-675

age to be similar to the overall population (enterprise: 64.3%; volunteer-based:

65.3%). However, we estimated the association between disclosed vulnerabili-

ties and the number of dependencies for both groups and noticed that enterprise

projects are less likely to suffer from them, compared to volunteer-based projects

based on the linear regression analysis (coeff= 0.5 < coeff= 0.6825).680

In summary, our dataset allows us to further speculate that enterprise projects

may indeed be less likely to be suffer from vulnerabilities due to a higher quality

of native code and a more careful selection of dependencies. However, we cannot

provide strong evidence to support this based on our dataset alone, and more

studies are necessary to investigate a larger population and additional factors.685

33

5.3. Inspection of SpotBugs’ Findings

To acquire more insights over SpotBugs’ findings, we selected three projects

from our dataset and investigated if the reported potential vulnerabilities are

exploitable. This process consists of the following steps:

1. retrieve SpotBugs’ xml report for a project,690

2. dynamically analyze the project by executing all test cases provided by

the developers,

3. manually inspect the source code flagged as vulnerable.

For this process we selected three projects, namely spotify/netty4-zmtp,

gturri/aXMLRPC and twitter/whiskey to manually investigate the validity695

of thirteen potential vulnerabilities reported by SpotBugs. All three projects

contained potential vulnerabilities detected by SpotBugs, as well as unit tests

that challenge the functionality of the application.

In Table 10, we present our findings from the manual inspection of each

potential vulnerability of the three selected projects. We mark as True positive700

the bugs in SpotBugs’ report that can lead to actual security vulnerabilities

based on the description provided by SpotBugs34 and its plugin, FindSecBugs.35

In the False positive column, we report SpotBugs’ findings that do not constitute

a security vulnerability. Finally, as Undecided, we report those that partially

match the vulnerability description.705

Table 10: Manual inspection of SpotBugs’ findings

Project True positive False positive Undecided

spotify/netty4-zmtp 1 − 1

gturri/aXMLRPC 3 1 1

twitter/whiskey 2 2 2

We dynamically analyzed the source code of the three projects by executing

34https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html
35https://find-sec-bugs.github.io/bugs.htm

34

https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html
https://find-sec-bugs.github.io/bugs.htm

the provided test cases and applying the Java Code Coverage Library 36 on them.

The results showed that the lines containing a potential vulnerability flagged

as True positive were covered by one ore more test cases. This finding suggests

that more extensive testing related to the security requirements is required.710

Furthermore, other aspects of dynamic analysis could be used to supplement

static analysis in order to test the application’s behaviour more extensively. For

example, fuzz testing is a prominent dynamic analysis technique for discovering

software bugs and security vulnerabilities. The success of this technique is re-

flected by the hundreds of bugs detected in popular applications by the fuzzer715

AFL.37 Fuzz testing iteratively and randomly generates inputs with which it

tests a target program. However, this technique comes with a great computa-

tional cost. Klees et al., [36] performed an evaluation of 32 studies related to

fuzz testing and reported that all suffered by one or more violations of the pro-

posed proper methodology for performing this technique. This shows that the720

effectiveness of fuzz testing depends on the prior-execution configuration of the

tester based on the context of each application. This makes fuzz testing difficult

to apply on a large-scale analysis such as the one reported in this manuscript.

5.4. Implications for Researchers and Practitioners

Security assessment and risk analysis are common practices among software725

developers and researchers. With the prevalence of agile software development

and the automations that continuous deployment strategy offers, security as-

sessment can be performed before every version release of a software system. In

our study, we provided evidence that source code size has a negative impact on

the security of a software system. Additionally, we showed that a higher number730

of dependencies tend to be associated with more security risks in open-source

software systems. To mitigate this risk more strict security assessment methods

should be followed. For example, automated build processes could integrate vul-

36https://www.eclemma.org/jacoco/
37AFL2018.AmericanFuzzingLop(AFL).https://lcamtuf.coredump.cx/afl/

35

https://www.eclemma.org/jacoco/
AFL 2018. American Fuzzing Lop (AFL). https://lcamtuf.coredump.cx/afl/

nerability detection tools, e.g., SpotBugs, Snyk and owasp Dependency Check.

Such methods can provide valuable information regarding the security status of735

the native code and the risks introduced through dependencies.

Software developers can consult the dataset and gain insight related to the

security vulnerabilities of 1 244 open-source projects. Practitioners can use this

information to perform risk analysis and prioritize bug-fixing activities related

to security defects. Moreover, practitioners can employ the provided automation740

scripts to perform a similar analyses on their own code base.

The provided dataset can be used by researchers to explore additional re-

search questions based on other characteristics of the projects, e.g., clustering of

projects based on one or more of the available variables. Additionally, by taking

advantage of SpotBugs plurality of findings, researchers can investigate other745

software quality attributes (e.g., correctness and performance). To examine this

aspect, researchers can modify the provided scripts to enrich SpotBugs’ report

with information related to these attributes. Our scripts and guidelines are

available for researchers to create their own dataset or extend the one analyzed

in this study.750

6. Threats to Validity

In this section, we discuss the three types of validity that are applicable

in this study: 1) the construct validity; 2) the reliability; and 3) the external

validity. We exclude internal validity since our study doesn’t examine causality.

Construct validity examines the relationship between the study’s observable755

object or phenomenon and its research questions. Reliability examines if the

study can be replicated and produce the same results. Finally, external validity

examines potential threats to generalizing the results of this study to other

cases.

Regrading construct validity, we can argue that static analysis can only760

detect potential security defects and not actually exploitable vulnerabilities.

However, as we saw, these reports are correlated with the existence of exploitable

36

vulnerabilities. Furthermore, vulnerabilities reported by static analyzers in the

reused code may not be exploitable since some vulnerable elements may never

be executed by the native code, and thus be irrelevant. Moreover, our study is765

limited to identifying only black-box reuse as defined by Heinemann et al. [37],

which requires developers to include a binary version of the dependency. White-

box reuse is the integration of the dependency code into the native code. White-

box requires clone code-detection and, thus, is out of the scope of this study.

Finally, we selected the amount of GitHub stars for measuring the popularity770

of our projects. There are other criteria, such as watchers and forks, that may

render different results.

Concerning reliability, we put our best effort to make this study easy to

replicate. The source code, along with the guidelines to execute it, are available

on GitHub.38 To reproduce the same results, researchers should revert the Git775

repositories of the locally downloaded projects to the date of this study (July

20th 2019). To mitigate reliability risks, two developers were involved in the

development of the scripts and all authors reviewed the analysis process.

Finally, concerning external validity, we identified three potential risks. Firstly,

the project selection was limited to one programming language (Java), and thus780

generalization of our findings to other languages requires further investigation.

Secondly, the selection of our projects represents only a proportion of the avail-

able open-source Java projects on Github and thus, generalization of our findings

to open-source Java projects hosted in Github or other web vcs requires fur-

ther investigation. Finally, despite the fact that Maven provided us a straight-785

forward way of building the projects and easy access to the dependencies, it also

limited our dataset. Almost 34% of the initial project selection (3 500) failed to

build with Maven or was partially built, and was therefore excluded from the

analysis.

38https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software

37

https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software

7. Conclusion790

Software reuse is a widely adopted practice that still raises several concerns

when it comes to security risks. There are good arguments to both reuse and not

reuse source code, especially with regards to open-source software. In this con-

text, we conducted a multiple-case study to explore and discuss the relationship

between software reuse and the amount of security vulnerabilities in open-source795

projects. For that, we followed up on a previous study [2] and further examined

the distribution of potential vulnerabilities among the code created by a devel-

opment team (i.e., native code) and code reused from third-party dependencies.

Moreover, we investigated how information about disclosed vulnerabilities from

public databases triangulate with previous results especially on studying the800

association between the ratio of reuse and the density of vulnerabilities.

For that, we looked into the most popular Java projects in the GitHub Ac-

tivity Data database and constructed a dataset with 1 244 projects, containing

information regarding the size of both native and reused code, as well as vulner-

ability information obtained from the static analyzer SpotBugs and the owasp805

Dependency-Check tool. Among the results, we observed that larger projects

are related with an increased amount of potential vulnerabilities in both native

and reused code. Furthermore, native code appears to have a higher vulnerabil-

ity density. However, our analysis showed no strong evidence that native code

contributes to more vulnerabilities than reused code in a project. Additionally,810

the results suggest that the number of dependencies in a project is correlated

to its number of vulnerabilities.

In light of the theoretical and empirical designs, and the observed results,

we envisage several opportunities of future work. On the one hand, it is desir-

able to investigate other programming languages, automated build systems and815

package managers (e.g., Ant, Gradle, npm and pip). Such data could be used to

further enrich the provided dataset, and allow for confirmatory and replication

studies. Future studies could explore more in-depth research questions related

to, for example, features that could cluster similar projects in terms of size, also

38

including a qualitative analysis to explain each cluster. On the other hand, the820

toolkit reported in paper could be implemented as a workbench that could ben-

efit practitioners and researchers alike by fostering in-house analyses or future

studies.

References

References825

[1] R. G. Kula, D. M. German, A. Ouni, T. Ishio, K. Inoue, Do developers

update their library dependencies?, Empirical Software Engineering 23 (1)

(2018) 384–417. doi:10.1007/s10664-017-9521-5.

[2] A. Gkortzis, D. Feitosa, D. Spinellis, A double-edged sword? software

reuse and potential security vulnerabilities, in: X. Peng, A. Ampatzoglou,830

T. Bhowmik (Eds.), Reuse in the Big Data Era, Springer International

Publishing, Cham, 2019, pp. 187–203.

[3] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, F. Massacci, Vul-

nerable Open Source Dependencies: Counting Those That Matter, in:

Proc. 12th ACM/IEEE Int. Symp. on Empirical Software Engineering and835

Measurement (ESEM ’18), ACM, Oulu, Finland, 2018, pp. 42:1–42:10.

doi:10.1145/3239235.3268920.

[4] S. Neuhaus, T. Zimmermann, The beauty and the beast: Vulnerabilities

in red hat’s packages, in: In: Proc. 2009 USENIX Annual Technical Conf.

(USENIX 2009.840

[5] M. Zimmermann, C. Staicu, C. Tenny, M. Pradel, Small world with high

risks: A study of security threats in the npm ecosystem, CoRR (2019).

arXiv:1902.09217.

URL http://arxiv.org/abs/1902.09217

[6] A. Decan, T. Mens, E. Constantinou, On the impact of security vulnerabil-845

ities in the npm package dependency network, in: Proceedings of the 15th

39

https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1145/3239235.3268920
http://arxiv.org/abs/1902.09217
http://arxiv.org/abs/1902.09217
http://arxiv.org/abs/1902.09217
http://arxiv.org/abs/1902.09217
http://arxiv.org/abs/1902.09217

International Conference on Mining Software Repositories, MSR ’18, Asso-

ciation for Computing Machinery, Gothenburg, Sweden, 2018, pp. 181–191.

doi:10.1145/3196398.3196401.

[7] A. Meneely, L. Williams, Secure open source collaboration: An empirical850

study of linus’ law, in: Proc. 16th ACM Conf. Computer and Commu-

nications Security, CCS ’09, ACM, pp. 453–462. doi:10.1145/1653662.

1653717.

[8] P. Mohagheghi, R. Conradi, O. M. Killi, H. Schwarz, An Empirical Study of

Software Reuse vs. Defect-Density and Stability, in: Proc. 26th Int. Conf.855

Software Engineering (ICSE ’04), IEEE Computer Society, Washington,

DC, USA, 2004, pp. 282–292.

URL http://dl.acm.org/citation.cfm?id=998675.999433

[9] D. Mitropoulos, V. Karakoidas, P. Louridas, G. Gousios, D. Spinellis, The

bug catalog of the Maven ecosystem, in: Proc. 11th Working Conf. Mining860

Software Repositories (MSR ’14), ACM, Hyderabad, India, 2014, pp. 372–

375. doi:10.1145/2597073.2597123.

[10] Y. Shin, A. Meneely, L. Williams, J. A. Osborne, Evaluating complexity,

code churn, and developer activity metrics as indicators of software vulner-

abilities 37 (6) 772–787. doi:10.1109/TSE.2010.81.865

[11] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, S. Fahl,

Stack Overflow Considered Harmful? The Impact of Copy Paste on An-

droid Application Security, in: 2017 IEEE Symposium on Security and Pri-

vacy (SP), 2017, pp. 121–136, iSSN: 2375-1207. doi:10.1109/SP.2017.31.

[12] R. Abdalkareem, E. Shihab, J. Rilling, On code reuse from StackOver-870

flow: An exploratory study on Android apps, Information and Software

Technology 88 (2017) 148–158. doi:10.1016/j.infsof.2017.04.005.

[13] N. H. Pham, T. T. Nguyen, H. A. Nguyen, X. Wang, A. T. Nguyen,

T. N. Nguyen, Detecting Recurring and Similar Software Vulnerabilities, in:

40

https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1145/1653662.1653717
https://doi.org/10.1145/1653662.1653717
https://doi.org/10.1145/1653662.1653717
http://dl.acm.org/citation.cfm?id=998675.999433
http://dl.acm.org/citation.cfm?id=998675.999433
http://dl.acm.org/citation.cfm?id=998675.999433
http://dl.acm.org/citation.cfm?id=998675.999433
https://doi.org/10.1145/2597073.2597123
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1109/SP.2017.31
https://doi.org/10.1016/j.infsof.2017.04.005

Proc. 32nd ACM/IEEE Int. Conf. Software Engineering (ICSE ’10), ACM,875

Cape Town, South Africa, 2010, pp. 227–230. doi:10.1145/1810295.

1810336.

[14] S. E. Ponta, H. Plate, A. Sabetta, Beyond metadata: Code-centric and

usage-based analysis of known vulnerabilities in open-source software, in:

Proc. 34th IEEE Int. Conf.on Software Maintenance and Evolution (ICSME880

’18), 2018. doi:10.1109/ICSME.2018.00054.

[15] P. Runeson, M. Host, A. Rainer, B. Regnell, Case Study Research in Soft-

ware Engineering: Guidelines and Examples, Wiley Blackwell, 2012.

[16] I. Chowdhury, M. Zulkernine, Can Complexity, Coupling, and Cohesion

Metrics Be Used As Early Indicators of Vulnerabilities?, in: Proceedings of885

the 2010 ACM Symposium on Applied Computing, SAC ’10, ACM, New

York, NY, USA, 2010, pp. 1963–1969, event-place: Sierre, Switzerland.

doi:10.1145/1774088.1774504.

[17] E. Raymond, The cathedral and the bazaar, Knowledge, Technology &

Policy 12 (3) (1999) 23–49. doi:10.1007/s12130-999-1026-0.890

[18] J. Wang, J. M. Carroll, Behind Linus’s law: A preliminary analysis of

open source software peer review practices in Mozilla and Python, in: CTS

2011: International Conference on Collaboration Technologies and Systems,

IEEE, 2011, pp. 117–124.

[19] R. van Solingen, V. Basili, G. Caldiera, H. D. Rombach, Goal Question895

Metric (GQM) approach, in: Encyclopedia of Software Engineering, John

Wiley & Sons, Inc., Hoboken, NJ, USA, 2002, pp. 528–532. doi:10.1002/

0471028959.sof142.

[20] D. Spinellis, Z. Kotti, K. Kravvaritis, G. Theodorou, P. Louridas, A dataset

of enterprise-driven open source software, in: 17th International Conference900

on Mining Software Repositories, MSR ’20, Association for Computing

Machinery, New York, NY, USA, 2020. doi:10.1145/3379597.3387495.

41

https://doi.org/10.1145/1810295.1810336
https://doi.org/10.1145/1810295.1810336
https://doi.org/10.1145/1810295.1810336
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1145/1774088.1774504
https://doi.org/10.1007/s12130-999-1026-0
https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.1145/3379597.3387495

[21] M. Kulenovic, D. Donko, A survey of static code analysis methods for

security vulnerabilities detection, in: Proc. 37th Int. Convention on Infor-

mation and Communication Technology, Electronics and Microelectronics905

(MIPRO ’14), 2014, pp. 1381–1386. doi:10.1109/MIPRO.2014.6859783.

[22] D. Hovemeyer, W. Pugh, Finding bugs is easy, ACM SIGPLAN Notices

39 (12) (2004) 92–106. doi:10.1145/1052883.1052895.

[23] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, M. A.

S. E. I. T. on Vouk, On the value of static analysis for fault detection in910

software, Software Engineering, IEEE Transactions on 32 (4) (2006) 240–

253. doi:10.1109/TSE.2006.38.

[24] D. A. Tomassi, Bugs in the wild: Examining the effectiveness of static an-

alyzers at finding real-world bugs, in: Proc. 2018 26th ACM Joint Meeting

on European Software Engineering Conf. and Symp. on the Foundations915

of Software Engineering (ESEC/FSE ’18), ACM, Lake Buena Vista, FL,

USA, 2018, pp. 980–982. doi:10.1145/3236024.3275439.

[25] D. Feitosa, A. Ampatzoglou, P. Avgeriou, E. Y. Nakagawa, Investigating

quality trade-offs in open source critical embedded systems, in: Proc. 11th

Int. ACM SIGSOFT Conf. the Quality of Software Architectures (QoSA920

’15), ACM, Montreal, QC, Canada, 2015, pp. 113–122. doi:10.1145/

2737182.2737190.

[26] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, Y. Zhou, Evaluating

static analysis defect warnings on production software, in: Proc. 7th ACM

SIGPLAN-SIGSOFT workshop on Program analysis for software tools and925

engineering (PASTE ’07), ACM Press, San Diego, California, USA, 2007,

pp. 1–8. doi:10.1145/1251535.1251536.

[27] N. Ayewah, W. Pugh, The Google FindBugs fixit, in: Proc. 19th Int. Symp.

on Software testing and analysis (ISSTA ’10), ACM, Trento, Italy, 2010,

pp. 241–252. doi:10.1145/1831708.1831738.930

42

https://doi.org/10.1109/MIPRO.2014.6859783
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1145/3236024.3275439
https://doi.org/10.1145/2737182.2737190
https://doi.org/10.1145/2737182.2737190
https://doi.org/10.1145/2737182.2737190
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1831708.1831738

[28] D. Feitosa, A. Ampatzoglou, P. Avgeriou, A. Chatzigeorgiou, E. Nakagawa,

What can violations of good practices tell about the relationship between

gof patterns and run-time quality attributes?, Information and Software

Technology (sep 2018). doi:10.1016/j.infsof.2018.07.014.

[29] H. Khalid, M. Nagappan, A. E. Hassan, Examining the relationship be-935

tween FindBugs warnings and app ratings, IEEE Software 33 (4) (2016)

34–39. doi:10.1109/MS.2015.29.

[30] A. K. Tripathi, A. Gupta, A controlled experiment to evaluate the effec-

tiveness and the efficiency of four static program analysis tools for Java

programs, in: Proc. 18th Int. Conf. Evaluation and Assessment in Soft-940

ware Engineering (EASE ’14), ACM, London, UK, 2014, pp. 23:1–23:4.

doi:10.1145/2601248.2601288.

[31] L. Yu, A. Mishra, An empirical study of lehman’s law on software quality

evolution, International Journal of Software Informatics 7 (2013) 469–481.

[32] M. M. Lehman, Laws of software evolution revisited, in: Proceedings of945

the 5th European Workshop on Software Process Technology, EWSPT ’96,

Springer-Verlag, Berlin, Heidelberg, 1996, p. 108–124.

[33] I. Herraiz, D. Rodriguez, G. Robles, J. Gonzalez-Barahona, The evolu-

tion of the laws of software evolution: A discussion based on a system-

atic literature review, ACM Computing Surveys 46 (2) (2013). doi:950

10.1145/2543581.2543595.

[34] D. W. van Liere, How shallow is a bug? why open source communities

shorten the repair time of software defects, ICIS 2009 Proceedings (2009)

195.

[35] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillère, J. Klein, Y. L. Traon, Got955

issues? Who cares about it? A large scale investigation of issue trackers

from GitHub, in: 2013 IEEE 24th International Symposium on Software

43

https://doi.org/10.1016/j.infsof.2018.07.014
https://doi.org/10.1109/MS.2015.29
https://doi.org/10.1145/2601248.2601288
https://doi.org/10.1145/2543581.2543595
https://doi.org/10.1145/2543581.2543595
https://doi.org/10.1145/2543581.2543595

Reliability Engineering (ISSRE), 2013, pp. 188–197, iSSN: 1071-9458, 2332-

6549. doi:10.1109/ISSRE.2013.6698918.

[36] G. Klees, A. Ruef, B. Cooper, S. Wei, M. Hicks, Evaluating fuzz testing,960

in: Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’18, Association for Computing Machinery,

New York, NY, USA, 2018, p. 2123–2138. doi:10.1145/3243734.3243804.

[37] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, M. Irlbeck, On

the Extent and Nature of Software Reuse in Open Source Java Projects, in:965

Proc. 12th Int. Conf. Top Productivity through Software Reuse (ICSR’11),

Springer Berlin Heidelberg, Pohang, South Korea, 2011, pp. 207–222.

44

https://doi.org/10.1109/ISSRE.2013.6698918
https://doi.org/10.1145/3243734.3243804

	Introduction
	Related Work
	Theoretical and Empirical Design
	Theoretical Model
	Objective and Research Questions
	Cases and Unit of Analysis
	Variables and Data Collection
	Analysis Procedure

	Results
	RQ1 - Relationship between Vulnerabilities and Size and Reuse
	RQ2 - Distribution of Vulnerabilities in Native and Reused Code
	RQ3 - Disclosed Vulnerabilities in Reused Code
	RQ4 - Dependencies' Use frequency

	Discussion
	Interpretation of the Results
	Comparison between Enterprise and Volunteer-based Projects
	Inspection of SpotBugs' Findings
	Implications for Researchers and Practitioners

	Threats to Validity
	Conclusion

